Skip to main content

General Physics I:

Subsection 7.3.1 Rotational Overview

The table below summarizes some of the physical quantities as rotational anologue to a translation motion.
Table 7.3.1.
Linear Motion Unit Rotational Motion Unit Relation
\(\vec{F}=m\vec{a}\) \(N\) \(\vec{\Gamma}=I\vec{\alpha}\) \(Nm\) \(\vec{\Gamma} =\vec{r}\times\vec{F}\)
\(v_{f}=v_{i}+a t\) \(m/s\) \(\omega_{f}=\omega_{i} +\alpha t\) \(rad/s \) \(\vec{v}=\vec{r}\times \vec{\omega}\)
\(v^{2}_{f}=v^{2}_{i}+2a s\) \(\omega^{2}_{f}=\omega^{2}_{i}+2\alpha\theta\) \(a_{t}=r\alpha\)
\(s=v_{i}t+\frac{1}{2}at^{2}\) \(m\) \(\theta=\omega_{i}t+\frac{1}{2}\alpha t^{2}\) \(rad\) \(s=r\theta\)
\(P =\frac{W}{t} = \frac{\vec{F}\cdot \vec{s}}{t} = \vec{F}\cdot\vec{v}\) \(Watt \) \(P =\frac{W}{t}=\frac{\vec{\Gamma}\cdot \vec{\theta}}{t} = \vec{\Gamma}\cdot\vec{\omega}\) W
Mass (M) kg Inertia (I) \(kgm^{2}\) \(I=Mr^{2}\)
p=mv kgm/s \(L=I\omega\) \(kgm^{2}/s \) \vec{L}=\vec{r}\times\vec{p}
\(KE=\frac{1}{2}mv^{2} \) Joule \(KE=\frac{1}{2}I\omega^{2}\) Joule \(a_{c} =a_{r}=\frac{v^{2}}{r}\)
\(\Delta p=F\Delta t=\mathscr{I}\) \(Ns \) \(\Delta L=\Gamma \Delta t\) Nms
\(W=F s\) \(J\) \(W=\Gamma\theta\) J
\(F=\frac{\Delta p}{\Delta t}\) \(\Gamma=\frac{\Delta L}{\Delta t}\)
Although the mathematical forms of the equations are quite similar, rotational dynamics differs from linear dynamics in the following respects. It applies to systems consisting of a single rotating object rather than a point particle; The motion of a body is due to rotational velocity rather than the translational velocity; and the agent which cause the motion is the net torque not the net force. In rotational motion axis of rotation must be specified to characterize the rotational motion.