Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\T}{\mathcal T}
\newcommand\comb[2]{^{#1}C{_{#2}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.5 Dynamics
Dynamics in physics explains the causes of motion. In dynamics \(v\neq 0, \quad a\neq 0,\) and \(F\neq 0\text{.}\) From Newton’s Second Law:
\begin{equation*}
\sum \vec{F} = m \vec{a}
\end{equation*}
or, equivalently
\begin{equation*}
\sum F_{x} = m a_{x}
\end{equation*}
(x-component of \(\vec{F}\)), and
\begin{equation*}
\sum F_{y} = m a_{y}
\end{equation*}
(y-component \(\vec{F}\)) For gravitational force or weight, \(F = mg\text{.}\)