Skip to main content

General Physics I:

Subsection 6.2.2 Derivation of Kepler’s I Law

From Newton’s Law of Gravitation and Newton’s II law of motion.
\begin{equation} \vec{F} = -\frac{GMm}{r^2}\hat{r}\tag{6.2.6} \end{equation}
\begin{equation} \vec{F} =m\vec{a_r}\tag{6.2.7} \end{equation}
Using (6.2.5)
\begin{equation*} or, \quad m (\ddot{r} -r\dot{\theta}^2)\hat{r} = -\frac{GMm}{r^2}\hat{r} \end{equation*}
\begin{equation} \ddot{r} -r\dot{\theta}^2 = -\frac{GM}{r^2}\tag{6.2.8} \end{equation}
From principle of conservation of angular momentum:
\begin{align*} \vec{L} \amp =\vec{r}\times\vec{p} = m(\vec{r}\times\vec{v}) \\ \amp = m[\vec{r}\times (\dot{r}\hat{r}+r\dot{\theta}\hat{\theta})] \\ \amp = m[\vec{r}\times r\dot{\theta}\hat{\theta}] = mr^2[\hat{r}\times\dot{\theta}\hat{\theta}] = mr^2\dot{\theta} \end{align*}
using (6.2.4) and \(\quad \because \hat{r}\times\hat{\theta} = \sin(90)=\hat{n} \quad \) and \(\quad \hat{r}\times\hat{r} = \sin(0)=0\)
\begin{equation} \therefore \dot{\theta} = \frac{L}{mr^2}\tag{6.2.9} \end{equation}
For convenience let’s say
\begin{equation} \frac{L}{m}=h\tag{6.2.10} \end{equation}
Also to solve (6.2.8) we need to change the variable \(r\) to its inverse,
\begin{equation} \frac{1}{r}=u\tag{6.2.11} \end{equation}
and then change the variable \(t\) to \(\theta\text{.}\) This mathematical trick was adopted by Bernaulli to solve differential equation of variable coefficient.
Hence, differentiate (6.2.11) with respect to \('t'.\)
\begin{align*} -\frac{1}{r^2}\frac{\,dr}{\,dt} \amp = \frac{\,du}{\,dt} \\ \amp =\frac{\,du}{\,d\theta} \frac{\,d\theta}{\,dt} \quad \text{(chain rule)}\\ or, \quad \dot{r} \amp =-\frac{1}{u^2}\dot{\theta}\frac{\,du}{\,d\theta} \end{align*}
\begin{equation} \therefore \quad \dot{r} = -h\frac{\,du}{\,d\theta}\tag{6.2.12} \end{equation}
from (6.2.9), (6.2.10) and (6.2.11), we have
\begin{equation} \dot{\theta}= \frac{L}{mr^2}=hu^2\tag{6.2.13} \end{equation}
Differentiate (6.2.12) w.r. t. \('t'\) again, we get -
\begin{align*} \ddot{r} \amp =-h\frac{\,d}{\,dt}(\frac{\,du}{\,d\theta}) \\ \amp =-h\frac{\,d}{\,d\theta}(\frac{\,du}{\,d\theta})\frac{\,d\theta}{\,dt}\\ \amp =-h\dot{\theta}\frac{\,d^2 u}{\,d\theta^2} \end{align*}
\begin{equation} \therefore \quad \ddot{r} =-h^2u^2\frac{\,d^2 u}{\,d\theta^2}\tag{6.2.14} \end{equation}
From (6.2.8)
\begin{equation*} -h^2u^2\frac{\,d^2 u}{\,d\theta^2} - \frac{1}{u}(h^2u^4)=-GMu^2 \end{equation*}
\begin{equation*} or,\quad \frac{\,d^2 u}{\,d\theta^2} +u =\frac{GM}{h^2} =\frac{k}{h^2} \quad (say) \end{equation*}
assume \(k=GM\)
\begin{equation*} or, \quad \frac{\,d^2}{\,d\theta^2} (u-\frac{k}{h^2}) + (u-\frac{k}{h^2}) =0 \end{equation*}
Again say,
\begin{equation} u-\frac{k}{h^2} = y\tag{6.2.15} \end{equation}
\begin{equation} \therefore \quad \frac{\,d^2 y}{\,d\theta^2}+y =0\tag{6.2.16} \end{equation}
This is homogeneous second order linear differential equation with constant coefficient. The solution of which can be given as
\begin{equation} y = A\cos\theta\tag{6.2.17} \end{equation}
where \(A\) is an arbitrary constant whose value can be determined by initial condition. There are other possible solution to this equation as well such as \(y=A\cos\theta+B\sin\theta \) or simply \(y =B\sin\theta.\)
\begin{align*} or, \quad u - \frac{k}{h^2} \amp = A\cos\theta\\ u \amp =\frac{k}{h^2}+A\cos\theta \\ \amp = \frac{k}{h^2}[1+\frac{Ah^2}{k}\cos\theta] \\ \amp = \frac{k}{h^2}[1+e\cos\theta] \end{align*}
\begin{equation*} or,\quad \frac{1}{r}=\frac{k}{h^2}[1+e\cos\theta] \end{equation*}
\begin{equation*} or,\quad r = \frac{h^2}{k}[\frac{1}{1+e\cos\theta}] \end{equation*}
\begin{equation} \therefore \quad r=\frac{l}{1+e\cos\theta}\tag{6.2.18} \end{equation}
The (6.2.18) is equation of conic section, where \(e=0,\) represents circle, \(0\lt e \lt 1\) represents ellipse, \(e=1,\) is parabola, and \(e\gt 1 \) represents hyperbola. In (6.2.18)
\begin{equation} e = \frac{Ah^2}{k} = \frac{AL^2}{GMm^2} = eccentricity.\tag{6.2.19} \end{equation}
and
\begin{equation} l = \frac{h^2}{k} =\frac{L^2}{GMm^2}=\quad \text{semi-latus rectum}\tag{6.2.20} \end{equation}
If (6.2.18) is an equation of ellipse then
\begin{equation*} e = \sqrt{1-\frac{b^2}{a^2}} \end{equation*}
So let’s prove it.

Proof.

In ellipse semi-major axis \(a\) is the arithmatic mean of \(r_{max}\) and \(r_{min}\text{.}\)
\begin{equation*} \therefore \quad a=\frac{1}{2}[r_{max}+r_{min}] = \frac{1}{2}[\frac{l}{1-e}+\frac{l}{1+e}] \end{equation*}
At \(\theta = 0\) and \(\pi\) from (6.2.18).
\begin{equation} \therefore \quad a = \frac{l}{1-e^2}\tag{6.2.21} \end{equation}
also semi-minor axis \(b\) is a geometric mean of \(r_{max}\) and \(r_{min}\text{.}\)
\begin{equation} \therefore \quad b^2 = r_{max}r_{min} = \frac{l^2}{1-e^2}\tag{6.2.22} \end{equation}
\begin{equation*} or,\quad b^2 = \frac{l^2(1-e^2)}{(1-e^2)^2} = a^2(1-e^2) \end{equation*}
\begin{equation} or, \quad \frac{b^2}{a^2} = 1-e^2\tag{6.2.23} \end{equation}
\begin{equation} \therefore \quad e = \sqrt{1-\frac{b^2}{a^2}}\tag{6.2.24} \end{equation}

Remark 6.2.2. Total Energy of Orbit.

Planetory orbits are closed so the total energy of orbit must be negative. Hence total energy,
\begin{equation*} E = KE+PE = \frac{1}{2}mv_{\theta}^2-\frac{GMm}{r} \end{equation*}
along the orbit. Here \(v^2=\dot{r}^2+r^2\dot{\theta}^2\)
\begin{equation*} or, \quad E = \frac{1}{2}(\frac{mh^2}{r^2})-\frac{GMm}{r} \end{equation*}
using (6.2.4) and (6.2.13).
\begin{equation*} or, \quad E = \frac{1}{2}m(\frac{h}{r_{min}})^2 -\frac{GMm}{r_{min}} \end{equation*}
at perihelion position. you may try from apehelion position energy.
\begin{equation*} E = \frac{1}{2}mh^2 (\frac{1+e}{l})^2 -\frac{GMm(1+e)}{l} \end{equation*}
\begin{align*} or, E \amp =\frac{1}{2}mh^2 (\frac{G^2M^2m^4}{L^4})(1+e)^2 -\frac{G^2M^2m^3(1+e)}{L^2} \\ or, E \amp = \frac{1}{2}\frac{G^2M^2m^3(1+e)^2}{L^2} -\frac{G^2M^2m^3(1+e)}{L^2} \end{align*}
\begin{equation} \frac{1}{2}\alpha(1+e)^2 -\alpha(1+e)-E =0\tag{6.2.25} \end{equation}
This is quadratic equation in (1+e). Here \(\alpha = \frac{G^2M^2m^3}{L^2}\)
\begin{equation*} \therefore \quad 1+e = \frac{\alpha\pm\sqrt{\alpha^2+4\alpha/2 E}}{2\alpha/2} \end{equation*}
Solving this equation, we get
\begin{equation*} E =-(1-e^2)\alpha/2 \end{equation*}
Hence, E is negative for \(0\lt e \lt 1.\)