Skip to main content

General Physics I:

Subsection 6.2.3 Derivation of Kepler’s II Law

The small area of a given triangle
\begin{align*} \,dA \amp = \frac{1}{2}r\,dr\sin\phi \\ or, \quad \,d\vec{A} \amp = \frac{1}{2}(\vec{r} \times \,d\vec{r}) \\ or, \quad \frac{\,d \vec{A}}{\,dt} \amp = \frac{1}{2}[\vec{r} \times \frac{\,d\vec{r}}{\,dt}] \end{align*}

Remark 6.2.3. Area of a triangle.

From a given triangle
\begin{equation} \sin B = \frac{OC}{a} \Rightarrow OC = a\sin B\tag{6.2.26} \end{equation}
Also,
\begin{equation} \sin A = \frac{OC}{b} \Rightarrow OC = b\sin A\tag{6.2.27} \end{equation}
Therefore, from (6.2.26) and (6.2.27), we have -
\begin{equation*} a \sin B = b\sin A \end{equation*}
Hence,
\begin{equation} \frac{\sin A}{a} = \frac{\sin B}{b} =\frac{\sin C}{c}\tag{6.2.28} \end{equation}
and
\begin{equation*} Area = \frac{1}{2}base\times height = \frac{1}{2}c (OC) \end{equation*}
\begin{equation} \therefore \quad Area = \frac{1}{2}c b\sin A = \frac{1}{2}c a\sin B = \frac{1}{2}a b\sin C\tag{6.2.29} \end{equation}
using (6.2.26) or, (6.2.27).
\begin{equation} or, \quad \frac{\,d\vec{A}}{\,dt} = \frac{1}{2}[\vec{r} \times \vec{v}] \tag{6.2.30} \end{equation}
But from angular momentum, we have
\begin{equation*} \vec{L}=m(\vec{r}\times\vec{v}) \end{equation*}
Therefore (6.2.30) can be written as
\begin{equation*} \frac{\,d\vec{A}}{\,dt} = \frac{\vec{L}}{2m} \end{equation*}
and
\begin{align*} or, \quad \vec{\dot{A}} \amp = \frac{1}{2m}\vec{L} = \frac{1}{2}[\vec{r}\times (\dot{r}\hat{r}+r\dot{\theta}\hat{\theta})] \\ \amp = \frac{1}{2}[r\hat{r}\times r\dot{\theta}\hat{\theta}] = \frac{1}{2}[r\hat{r}\times (\frac{Lr}{mr^2})\hat{\theta}] \\ \amp = \frac{L}{2m}[\hat{r}\times \hat{\theta}] = \frac{L}{2m} \hat{n} \end{align*}
by using (6.2.4) and (6.2.9). Also \(\vec{r}\times \hat{r} =0\) and \(\hat{n}\) is a unit vector perpendicular to the plane of orbit. Again,
\begin{equation*} \vec{\ddot{A}} = \frac{\,d}{\,dt}(\vec{\dot{A}}) = \frac{\,d}{\,dt}[\frac{L}{2m}] = 0 \end{equation*}
by using (6.2.2) or (6.2.3). Therefore we can say
\begin{equation} \vec{\dot{A}} = \frac{\,d\vec{A}}{\,dt} = constant.\tag{6.2.31} \end{equation}
That is areal velocity of planet is constant.