Skip to main content

General Physics I:

Section 5.3 Examples A

Work.

Example 5.3.1.

A man pushes a cart on a railway platform which has a rough surface. He applies a force of 100 N over a distance of 10 m. Thereafter, he gets tired and his force reduces gradually to 50 N. The total distance through which the cart has been moved is 20 m. Plot the force applied by the man and the frictional force of 50N versus displacement. Calculate the work done by the man and the frictional force.
Solution.
Work done by a man = Area under the F-x curve. Therefore \(W_{m}\) = Area of a rectangle I +Area of a trapezium II.
\begin{equation*} W_{m} = \left(100\times10\right)+\left(\frac{1}{2} (100+50)\times10\right) =1750 J \end{equation*}
Work done by a frictional force, \(W_{f}\)= Area of a rectangle III.
\begin{equation*} W_{f} = \left(-50\times20\right) = -1000 J \end{equation*}

Example 5.3.2.

Given the vectors \(\vec{A} = 3 \hat{i} + 4 \hat{j}\) and \(\vec{B} = \hat{i} - 2 \hat{j} + 2 \hat{k}\) Find
  1. the magnitude of each vector and
  2. the angle between them.
Solution.
  1. \begin{equation*} A^{2} = \vec{A} \cdot\vec{A} = 3^{2} + 4^{2} = 25; \end{equation*}
    \begin{equation*} \therefore A = \sqrt{25}=5 \end{equation*}
    \begin{equation*} B^{2} = \vec{B} \cdot\vec{B} = (1)^{2} + (-2)^{2} + 2^{2} = 9; \end{equation*}
    \begin{equation*} \therefore B = \sqrt{9}=3. \end{equation*}
  2. \begin{equation*} \vec{A} \cdot\vec{B} = A B \cos\theta \end{equation*}
    or,
    \begin{equation*} A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{z} = \left[\sqrt{A^{2}_{x}+A^{2}_{y}+A^{2}_{z}} \sqrt{B^{2}_{x}+B^{2}_{y}+B^{2}_{z}}\right]\cos\theta \end{equation*}
    or,
    \begin{equation*} (3)(1) + (4)(-2) + (0)(2)= \sqrt{9+16+0}\sqrt{1+4+4}\cos\theta \end{equation*}
    \begin{equation*} \text{or,}\quad -5 = 15\cos\theta \quad \Rightarrow \quad \cos\theta = -\frac{1}{3} \end{equation*}
    \begin{equation*} or, \quad \theta = \cos^{-1}\left(-\frac{1}{3}\right) = 109.5^{o} \end{equation*}

Example 5.3.3.

A force is described as \(\vec{F} = axy \hat{i} + bx^{2} \hat{j}\text{,}\) where \(a = 4 N/m^{2}\) and \(b = 2 N/m^{2}\text{.}\) Find the work done by this force along the straight line path
  1. from (0,0) to (0,10m),
  2. from (0,10m) to (5m, 10m),
  3. from (0,0) to (5m, 10m).
Solution.
  1. \begin{equation*} W =\int\vec{F}\cdot\,d\vec{r} = \int F_{x}\,dx+\int F_{y}\,dy+\int F_{z}\,dz \end{equation*}
    \begin{equation*} =\int\limits_{0}^{0} axy\,dx + \int\limits_{0}^{10} bx^{2}\,dy =0 \end{equation*}
    Since along (0,0) to (0,10 m), we have \(x=0\text{,}\) \(\,dx=0\text{,}\) and \(y=0 \oslash 10m\text{.}\)
  2. \begin{equation*} W =\int\vec{F}\cdot\,d\vec{r} = \int F_{x}\,dx+\int F_{y}\,dy+\int F_{z}\,dz \end{equation*}
    \begin{equation*} =\int axy\,dx + \int bx^{2}\,dy \end{equation*}
    Along path (0,10 m) to (5 m, 10 m), we have \(x=0 \oslash 5m, \) and \(\,dy=0, \quad y=10m\text{.}\) So
    \begin{equation*} W= ay \int\limits_{0}^{5} x\,dx + \int\limits_{10}^{10} bx^{2}\,dy \end{equation*}
    \begin{equation*} = \left(\frac{1}{2}ay\right)\left[x^{2}\right]_{0}^{5} \end{equation*}
    \begin{equation*} = \left(\frac{1}{2}\times4\times10\right)\times5^{2}=500 J \end{equation*}
  3. \begin{equation*} W =\int\vec{F}\cdot\,d\vec{r} = \int F_{x}\,dx+\int F_{y}\,dy+\int F_{z}\,dz \end{equation*}
    \begin{equation*} =\int axy\,dx + \int bx^{2}\,dy \end{equation*}
    Along path c, \(y=2x,\) and \(x=0 \oslash 5m,\) so \(\,dy=2\,dx.\) Hence
    \begin{equation*} W= \int\limits_{0}^{5} ax(2x)\,dx + \int\limits_{0}^{5} bx^{2}2\,dx =2\left(a+b\right)\int\limits_{0}^{5} x^{2}\,dx \end{equation*}
    \begin{equation*} = 2(a+b)\frac{x^{3}}{3} = 2(a+b)\left.\frac{x^{3}}{3}\right\vert_{0}^{5} = 2(4+2)\frac{5^{3}}{3} =500 J \end{equation*}

Example 5.3.4.

A horizontal force of 1000 N moves a block of mass 100 kg along a horizontal plane in a straight line of length 2 m. If the block starts from rest and if the coefficient of friction is 0.2, how much work is done
  1. by the force,
  2. by gravity, and
  3. by friction.
  4. How fast will the block be moving when it gets to the other end of the plane?
Solution.
\(F = 1000 N, \quad m = 100 kg, \quad x = 2 m, \quad \mu = 0.2,\quad v_{o} = 0.\) Equations:
\begin{equation*} \sum F_{x} = F - f = ma; \quad \sum F_{y} = N - w = 0; \quad w = mg= 980 N = N; \end{equation*}
\begin{equation*} f = \mu N= 196 N \end{equation*}
  1. \begin{equation*} W_{F} = \int \vec{F} \cdot \vec{\,dr} = \int F \,dr = F x = (1000 N)(2 m) = 2000 J \end{equation*}
  2. \begin{equation*} W_{g} = \int \vec{w}\cdot\vec{\,dr} = \int w \,dr\cos\theta = w x \cos(90^{o}) = 0 J \end{equation*}
  3. \begin{equation*} W_{f} = \int \vec{f}\cdot\vec{\,dr} = \int f \,d r \cos\theta = f x \cos(180^{o}) = - f x = -392 J \end{equation*}
  4. \begin{equation*} v^{2} = v^{2}_{o} + 2 a x;\quad a = 8.04 m/s^{2}; \quad \therefore v = 5.67 m/s \end{equation*}

Energy.

Example 5.3.5.

A block of mass \(500 \,g\) moving initially at \(2\, m/s\) slides across a horizontal table coming to rest after sliding \(2 \,m\text{.}\)
  1. What is the coefficient of sliding friction between block and table?
  2. How much energy was converted into heat by friction?
Solution.
Given: \(m=500 g=0.5kg, \quad v_{i}=2 m/s,\quad v_{f}=0, \quad d=2m.\)
  1. \begin{equation*} \Delta k=W =f\cdot d = KE_{f}-KE_{i} \end{equation*}
    \begin{equation} -\mu N d=0-\frac{1}{2}mv_{i}^{2} \tag{5.3.1} \end{equation}
    \begin{equation*} \sum F_{y} =N-mg=0 \end{equation*}
    \begin{equation} N=mg \tag{5.3.2} \end{equation}
    \begin{equation*} \text{or,}\quad \mu mg d=\frac{1}{2}mv^{2} \end{equation*}
    \begin{equation*} \therefore \mu =\frac{v^{2}}{2gd} = \frac{2^{2}}{2\times 9.8\times2} =0.1 \end{equation*}
  2. Heat dissipation =
    \begin{equation*} W_{f} =f\cdot d =\mu\cdot mg d = 0.1\times 0.5\times 9.8\times2 = 0.98 \,J. \end{equation*}

Example 5.3.6.

A 2 kg mass is dropped from a height of 1 m onto a spring of force constant 200 N/m. Assuming the spring has no mass and there is no friction,
  1. How far is the spring compressed?
  2. What is the maximum speed attained by the mass?
Solution.
Given: \(m = 2 \,kg, \quad y_{o} = 1 m,\quad k = 200 \,N/m. \)
  1. From conservation of energy, \(E_{A} = E_{B} = E_{C}.\)
    \begin{equation*} KE_{A}+PE_{A}+PE_{si}=KE_{B}+PE_{B}+PE_{sf} \end{equation*}
    \begin{equation*} \text{or,}\quad E_{A} = mgy_{o} = E_{B} = \frac{1}{2}kx^{2}-mgx \end{equation*}
    \begin{equation*} \text{or,}\quad \frac{1}{2}kx^{2}-mgx-mgy_{o}=0 \end{equation*}
    \begin{equation*} \text{or,}\quad \frac{1}{2}(200)x^{2}-2\times 9.8 x -2\times9.8\times 1=0 \end{equation*}
    \begin{equation*} \text{or,}\quad 100x^{2}-19.6x-19.6=0 \end{equation*}
    \begin{equation*} \text{or,}\quad x = \frac{19.6\pm\sqrt{19.6^{2}+4\times 100\times19.6}}{2\times 19.6} \end{equation*}
    \begin{equation*} \therefore x = 0.551 \,m \quad\text{or}, -0.36 \,m \end{equation*}
    Where, \(x=-0.36\,m\) lies above reference line hence get discarded.
    \begin{equation*} \therefore x=0.551\,m. \end{equation*}
  2. Let \(x'\) be the new equilibrium position for mass and spring system. At point C, \(F = w.\)
    \begin{equation*} \therefore\quad kx' =mg \quad \Rightarrow\quad x'=\frac{mg}{k} = 0.098 \,m \end{equation*}
    Now, \(x'\) is new equilibrium position but spring is still compressed from its original length hence spring contains some potential energy. Therefore, energy at point B, \(E_{B}\) = total energy at new mean position, \(E_{C}\text{.}\)
    \begin{equation*} \frac{1}{2}kx^{2}-mgx+0=\frac{1}{2}kx'^{2}-mgx'+\frac{1}{2}mv_{max}^{2} \end{equation*}
    \begin{equation*} \text{or,}\quad mgy_{o}=\frac{1}{2}kx'^{2}-mgx'+\frac{1}{2}mv_{max}^{2} \end{equation*}
    \begin{equation*} \text{or,}\quad \frac{1}{2}mv_{max}^{2} =mgy_{o}-\frac{1}{2}kx'^{2}+mgx' \end{equation*}
    On solving this equation, we get -
    \begin{equation*} v_{max}=\sqrt{19.6-100\times 0.551^{2}+19.6\times0.098}=4.53 \,m/s. \end{equation*}

Example 5.3.7.

A spherical meteor of density \(4 \,g/cm^{3}\) and diameter \(1 \,km\) falls onto the earth from a long distance.
  1. How much energy would it have when it hit the earth?
  2. How how fast would it hit the earth?
  3. If this energy were used to boil water at the rate of \(2.256\times 10^{6} \,J/kg\text{,}\) what volume of water would be vaporized?
  4. How big a cube would this be?
Solution.
Given:
\begin{equation*} \rho =4 \,g/cm^{3}=4000 \,kg/m^{3},\quad r=0.5\times 10^{3} \,m, \quad R = 6.38\times 10^{6} \,m, \end{equation*}
\begin{equation*} M=5.97\times10^{24} \,kg, \quad G=6.67\times10^{-11} \,Nm^{2}/kg^{2}, \end{equation*}
\begin{equation*} L_{v}=2.256\times10^{6} \,J/kg, \quad \rho_{o} =1000 \,kg/m^{3}, \end{equation*}
\begin{equation*} m=V\rho=\frac{4}{3}\pi r^{3}\rho = 2.094\times10^{12} \,kg \end{equation*}
  1. \begin{equation*} PE_{\infty}=KE_{e}+PE_{e} \end{equation*}
    \begin{equation*} 0=\frac{1}{2}mv^{2}-\frac{GMm}{R} \end{equation*}
    \begin{equation*} \therefore E_{e}= \frac{1}{2}mv^{2} = \frac{GMm}{R} \end{equation*}
    \begin{equation*} =\frac{(6.67\times10^{-11})(5.97\times10^{24})(2.094\times10^{12})}{6.38\times 10^{6}} \end{equation*}
    \begin{equation*} =1.307\times10^{20} \,J \end{equation*}
  2. \begin{equation*} \frac{1}{2}mv^{2} =1.307\times10^{20} \end{equation*}
    \begin{equation*} \therefore v=\sqrt{\frac{2E_{e}}{m}}=\sqrt{\frac{2(1.307\times10^{20})}{(2.094\times10^{12})}} =1.117\times10^{4} \,m/s \end{equation*}
  3. \begin{equation*} Q=E_{e} =m_{o}L_{v} = V_{o}\rho_{o}L_{v} \end{equation*}
    \begin{equation*} \text{or,}\quad V_{o} = \frac{E_{e}}{\rho_{o}L_{v}} = \frac{(1.307\times10^{20})}{(1000) (2.256\times10^{6})} = 5.79\times10^{10}m^{3} \end{equation*}
  4. \begin{equation*} V_{o}=L^{3} \quad \Rightarrow L=\sqrt[3]{V_{o}} = 3.87\times10^{3} \,m \end{equation*}

Example 5.3.8.

A small mass of 0.8 kg is launched by a compressed spring with force constant, \(k=600 \,N/m.\) The block slides along a horizontal frictionless surface and then up an inclined plane that makes an angle \(\theta=30^{o}\) with the horizontal. The coefficient of kinetic friction between the block and inclined plane is \(\mu_{k}=0.2. \) Find the maximum height, \(h\) reached by the block.
Solution.
Given: \(k=600 \,N/m, \quad m=0.8 \,kg, \quad \theta=30^{o},\quad \mu_{k}=0.2, \quad x=0.12 \,m\)
Now from,
\begin{equation*} E_{i}=E_{f}, \end{equation*}
we have -
\begin{equation*} \frac{1}{2}kx^{2}=\frac{1}{2}mv^{2}\quad \Rightarrow\quad v=\frac{kx^{2}}{m}=3.29 \,m/s \end{equation*}
On inclined plane,
\begin{equation} N=mg\cos\theta \tag{5.3.3} \end{equation}
\begin{equation} mg\sin\theta +f_{k} = ma_{x} \tag{5.3.4} \end{equation}
\begin{equation*} mg\sin\theta +\mu_{k}mg\cos\theta = ma_{x} \end{equation*}
\begin{equation*} \therefore \quad a_{x} = g\left(\sin\theta +\mu_{k}\cos\theta\right) = 6.60 \,m/s^{2} \end{equation*}
\begin{equation*} v_{f}^{2}=v_{i}^{2}-2a_{x}d \end{equation*}
\begin{equation*} \text{or,}\quad 0=3.29^{2}-2(6.60)d \qquad \Rightarrow\quad d=0.82 \,m \end{equation*}
\begin{equation*} \text{Hence,}\quad \sin\theta=\frac{h}{d} \quad \Rightarrow\quad h=d\sin\theta = 0.41 \,m \end{equation*}
Alternative:
\begin{equation*} \frac{1}{2}mv^{2}-f_{k}d = mgh \end{equation*}

Example 5.3.9.

A spring-like trampoline dips down 0.07 m when a person stands on it. If this person jumps up to a height of 0.31 m above the top of the uncompressed trampoline, how far will the trampoline compress after the person lands on it?
Solution.
On a person-trampoline system equilibrium, restoring force due to trmpoline balances the weight of a person, i.e.,
\begin{equation} F_{s} =kx=mg \tag{5.3.5} \end{equation}
After the trampoline compressed to a depth \(y=x+x_{1}\) when a person jumps from a height \(h\text{,}\) we have from principle of conservation of energy
\begin{equation*} \frac{1}{2} ky^{2} -mgx-mgx_{1}= mgh \end{equation*}
\begin{equation*} \text{or,}\quad \frac{1}{2} ky^{2} - mgy = mgh \end{equation*}
\begin{equation*} \text{or,}\quad \frac{1}{2} ky^{2} = mg(y+h) =kx(y+h) \end{equation*}
\begin{equation*} \text{or,}\quad y^{2} -2xy-2xh=0 \end{equation*}
\begin{equation*} \therefore \quad y= 0.2897 \,m \end{equation*}

Example 5.3.10.

A block of mass 0.5 kg is pressed against a spring of spring constant 100 N/m on a horizontal surface as shown in the figure below. The spring block system is compressed to a distance of 20 cm and then released. The block slides a total distance of 1 m before coming to rest.
  1. What is the coefficient of sliding friction between block and surface?
  2. What is the maximum speed the block attains throughout its motion? Section 7.5
Solution.
Given: \(m = 0.5 \,kg, \quad k = 100 \,N/m, \quad x_{1} = 0.2 m,\quad x_{2} = 1 \,m. \)
  1. \begin{equation*} E_{i} = E_{f} + W_{f}, \end{equation*}
    \begin{equation*} E_{i} = \frac{1}{2} k x^{2}_{1} = 2\,J, \end{equation*}
    \begin{equation*} E_{f} = 0, \quad W_{f} =f .x_{2} = 2 \,J, \quad \therefore \quad f = 2\, N. \end{equation*}
    \begin{equation*} w = mg = 4.9\, N, \quad f = \mu N, \quad N = w = 4.9 \,N, \end{equation*}
    \begin{equation*} \therefore \quad \mu = 0.408. \end{equation*}
  2. At point \(x\) before origin, frictional force and restoring force must be equal. Hence
    \begin{equation*} f = F = -kx. \end{equation*}
    \begin{equation*} \therefore, \quad x = - F/k = -2/100 = -0.02 \,m. \end{equation*}
    Now, workdone on the block by a spring or a friction,
    \begin{equation*} W_{fb} = F (x1 - x) = 2(0.2-0.02) = 0.36 \,J. \end{equation*}
    At this point the block attains maximum speed.
    \begin{equation*} \frac{1}{2} k x_{1}^{2}- W_{fb} = \frac{1}{2} m v^{2} \end{equation*}
    \begin{equation*} \therefore \quad v = 2.56 \,m/s \end{equation*}

Example 5.3.11.

A car of mass m in an amusement park ride rolls down a loop-the-loop track. If the car starts out at height h, rolls without friction, and makes a loop of radius R,
  1. what is the minimum value of h that will allow the car to make the loop without falling off the track?
  2. What is the speed of the car at the top of the loop?
  3. What is the speed of the car at the bottom of the loop?
  4. What is the speed of the car when it is located at a point level with the center of the loop?
  5. How many g’s of force do the passengers experience at that time?
  6. What is the magnitude of the acceleration of the car at that time?
Solution.
\begin{equation*} E_{1} = E_{a},\quad E_{1} = mgh, \quad E_{a} = \frac{1}{2} m v_{a}^{2} + mgy_{a}, \end{equation*}
\begin{equation*} y_{a} = 2R,\quad w = m a_{R}, \quad a_{R} = v^{2}_{a}/R, \quad w = m g, \end{equation*}
  1. \begin{equation*} h = \frac{5}{2} R, \end{equation*}
  2. \begin{equation*} v_{a} = \sqrt{Rg} \end{equation*}
  3. \begin{equation*} E_{1} = E_{c}, \quad E_{c} = \frac{1}{2} m v_{c}^{2}, \quad v_{c} = \sqrt{5Rg}, \end{equation*}
  4. \begin{equation*} E_{1} = E_{d}, \quad E_{a} = \frac{1}{2} m v_{d}^{2} + mgy_{d}, \quad y_{d} = R, \quad v_{d} = \sqrt{3Rg} \end{equation*}
  5. \begin{equation*} \sum F_{R} = N = m v^{2}_{d}/R, \quad \#g's = \frac{N}{w}, \quad \#g's = 3 \end{equation*}
  6. \begin{equation*} a_{R} = v^{2}_{d}/R = 3 g, \quad a_{T} = g, \quad \end{equation*}
    \begin{equation*} a =\sqrt{a_{R}^{2}+a_{T}^{2}},\quad a=\sqrt{10} g = 3.16 \, g \end{equation*}

Example 5.3.12.

A small object is placed at the very top of a spherical ball of radius 1 m. If there is no friction between the object and the ball, the object is in unstable equilibrium and eventually will slide off the ball. How far will the object move downward before leaving the surface of the ball?
Solution.
Given: \(r=1m, f=0,\quad x=?\text{.}\)
Suppose the ball of mass \(m\) is sliding down the sphere on a circular track. The necessary centripetal force \(F_{c}\) is then provided by the radial component of its weight and the normal force.
\begin{equation*} mg\cos\theta -N = \frac{mv^{2}}{r} \end{equation*}
At the point where the ball leaves the sphere normal force must be zero, i.e.,
\begin{equation*} N=0. \end{equation*}
\begin{equation*} \therefore mg\cos\theta = \frac{mv^{2}}{r}; \end{equation*}
\begin{equation*} \text{or,} \hspace{3pt} \cos\theta = \frac{v^{2}}{rg} \end{equation*}
\begin{equation} \text{or,}\quad v^{2} =rg\cos\theta \tag{5.3.6} \end{equation}
From the principle of conservation of energy, we have -
\begin{equation*} PE_{A}+KE_{A}=PE_{B}+KE_{B} \end{equation*}
Assume B is a point where ball leaves the sphere.
\begin{equation*} mg(2r) +0 = mg(h+r)+\frac{1}{2}mv^{2} \end{equation*}
\begin{equation*} \text{or,} \quad 2gr = g(r\cos\theta+r) +\frac{v^{2}}{r} \quad [\because h=OB\cos\theta =r\cos\theta] \end{equation*}
\begin{equation*} \text{or,} \quad 2gr-gr(1+\cos\theta)=\frac{1}{2}(gr\cos\theta) \end{equation*}
from eqn. (5.3.6).
\begin{equation*} text{or,} \quad 1-\cos\theta =\frac{\cos\theta }{2} \end{equation*}
\begin{equation*} \text{or,} \quad 1=\frac{3}{2}\cos\theta \end{equation*}
\begin{equation*} \theta = \cos^{-1}\left(\frac{2}{3}\right)=48^{o} \end{equation*}
\begin{equation*} \therefore x=r\theta = 1m\times \frac{\pi}{180}\times 48^{o} =0.84 \,m \end{equation*}
[using radian formula]
\begin{equation*} \text{or,}\quad y = 2r-(h+r) = r-h = r-r\cos\theta = r\left(1-\frac{2}{3}\right) = \frac{1}{3}r \end{equation*}
where \(x\) and \(y\) are the distance on the surface of sphere and depth below point \(A\) at which the ball left the sphere.

Power.

Example 5.3.13.

Work is done according to the equation \(W = 10 t^{3}\) in the MKS system. Find
  1. W(2),
  2. \(\displaystyle P_{av}(0,2),\)
  3. P(3).
Solution.
  1. \begin{equation*} W = 10 t^{3} \qquad \therefore W(2) = 10 (2)^{3} = 80 \,J \end{equation*}
  2. \begin{equation*} P_{av} = \frac{\,dW}{\,dt} = \frac{(W_{2} - W_{1})}{(t_{2} - t_{1})} \end{equation*}
    \begin{equation*} \therefore P(0,2) = \frac{(W(2) - W(0))}{(2 - 0)} = 40\, W \end{equation*}
  3. \begin{equation*} P = \frac{\,dW}{\,dt} = 30 t^{2}\qquad \therefore P(3) = 30 (3)^{2} = 270 \,W \end{equation*}

Example 5.3.14.

Power is expended according to the equation \(P = 10 t^{3}\) in the MKS system. Find
  1. W(2),
  2. \(\displaystyle P_{av}(0,2),\)
  3. P(3).
Solution.
  1. \begin{equation*} W = \int\limits_{0}^{t}P\,dt =\int\limits_{0}^{t}10 t^{3}\,dt= 2.5 t^{4} \end{equation*}
    \begin{equation*} \therefore W(2) = 2.5 (2)4 = 40 J \end{equation*}
  2. \begin{equation*} P_{av} = \frac{\,dW}{\,dt} = \frac{(W_{2} - W_{1})}{(t_{2} - t_{1})} \end{equation*}
    \begin{equation*} \therefore P(0,2) = \frac{(W(2) - W(0))}{2-0}= 20 \,W \end{equation*}
  3. \begin{equation*} P = 10 t^{3}\qquad \therefore P(3) = 10 (3)3 = 270 \,W \end{equation*}

Example 5.3.15.

An electrically powered conveyor belt 10 m long is tilted and used to lift bricks to the top of a building 5 m high. The belt will hold 100 bricks of mass 2 kg and makes one revolution every minute.
  1. How long does it take to transport a given brick from the bottom of the belt to the top?
  2. What is the minimum electrical power required to run the conveyor belt motor? (Also express answer in horsepower.)
  3. What is the minimum force required to move the bricks up the incline?
  4. If the coefficient of friction between belt and the surface that supports it is 0.3, what is the actual force required to move the bricks?
  5. What is the AMA of this machine?
  6. What is the IMA of this machine?
  7. What is the efficiency of this machine?
  8. What is the actual power required to operate the machine?
Solution.
Given: \(L = 10 \,m, \quad y = 5 \,m, \quad N = 100, \quad m_{1} = 2 \,kg, \quad f = 1 \) rev/min = 0.016667 Hz.
  1. \begin{equation*} T = 1/f, \quad T = 60 \,s, \quad t = T/2 , \quad t = 30 \,s \end{equation*}
  2. \begin{equation*} P = W/t,\quad m = 200 \,kg, \quad W = w y,\quad w = 1960 \,N, \end{equation*}
    \begin{equation*} w = m g,\quad W = 9800 \,J, \end{equation*}
    \begin{equation*} m = N m_{1},\quad P = 326.67 \,W,\quad P = 327 W = 0.438\, hp, \end{equation*}
    \(\because(746 \,W = 1 \,hp)\)
  3. \begin{equation*} P = F v,\quad v = 0.33333\, m/s, \quad v = L/t, \end{equation*}
    \begin{equation*} F = P/v = 980\, N, \quad F = 980 \,N \end{equation*}
  4. \begin{equation*} \mu = 0.3,\quad \sin\theta = y/L,\quad \theta = 30^{o}; \end{equation*}
    \begin{equation*} \sum F_{x} = F_{a} - f - w \sin\theta =0,\quad N =980 \,N, \end{equation*}
    \begin{equation*} \sum F_{y} = N - w \cos\theta = 0, \end{equation*}
    \begin{equation*} f = 294 N, \quad f = \mu N,\quad Fa = 1274 \,N \end{equation*}
  5. \begin{equation*} AMA = \frac{F_{out}}{F_{in}} = \frac{w}{F_{a}}, \quad AMA = 1.538 \simeq 1.54 \,N \end{equation*}
  6. \begin{equation*} IMA = \frac{d_{in}}{d_{out}} = \frac{L}{y}, \quad IMA = 2 \end{equation*}
  7. \begin{equation*} \varepsilon = \frac{AMA}{IMA}, \quad \varepsilon \simeq 76.9 \% \end{equation*}
  8. \begin{equation*} \varepsilon = \frac{P_{out}}{P_{in}} = \frac{P}{P_{a}}, \quad P_{a} = 424.667 \,W \simeq 425 \,W = 0.569 \,hp \end{equation*}