Skip to main content

General Physics I:

Subsection 10.2.4 Relation between \(\alpha, \,\beta,\) and \(\gamma\)

Consider a solid cube of side \(l_{o}\) at temperature \(T_{o}\) and \(l\) at temperature \(T.\) Hence from linear expansion, we have
\begin{equation*} l=l_{o}\left[1+\alpha \left(T-T_{o}\right)\right] \end{equation*}
The volume of a cube is therefore,
\begin{equation*} \text{or,}\quad V=l^{3} =\left[l_{o}(1+\alpha \Delta T)\right]^{3} = l_{o}^{3}\left[1+\alpha \Delta T)\right]^{3} \end{equation*}
\begin{equation*} = V_{o}\left[1+3\alpha \Delta T+3\alpha^{2}\Delta T^{2}+\alpha^{3}\Delta T^{3})\right] \end{equation*}
Now since \(\alpha \) is very small, \(\alpha^{2}\) is very very small. Hence the quantities \(\alpha^{2}\Delta T^{2}\) and \(\alpha^{3}\Delta T^{3}\) are neglected.
\begin{equation} \therefore\quad V=V_{o} \left[1+3\alpha\Delta T\right] \tag{10.2.1} \end{equation}
\begin{equation} \text{but,}\quad V=V_{o} \left[1+\gamma\Delta T\right] \tag{10.2.2} \end{equation}
By comparing eqns. (10.2.1) and (10.2.2), we get -
\begin{equation} \gamma = 3\alpha \tag{10.2.3} \end{equation}
Similarly the area of a cube is given by -
\begin{equation*} \text{or,}\quad A=l^{2} =\left[l_{o}(1+\alpha \Delta T)\right]^{2} \end{equation*}
\begin{equation*} = l_{o}^{2}\left[1+\alpha \Delta T\right]^{2} = A_{o}\left[1+2\alpha \Delta T+\alpha^{2}\Delta T^{2}\right] \end{equation*}
\begin{equation} \therefore\quad A=A_{o} \left[1+2\alpha\Delta T\right] \tag{10.2.4} \end{equation}
\([\because \alpha \) is very small.
\begin{equation} \text{but,}\quad A=A_{o} \left[1+\beta\Delta T\right] \tag{10.2.5} \end{equation}
By comparing eqns. (10.2.4) and (10.2.5), we get -
\begin{equation} \beta = 2\alpha \tag{10.2.6} \end{equation}
\begin{equation*} \therefore \alpha:\beta:\gamma= 1:2:3 \end{equation*}