Skip to main content

General Physics I:

Subsection 7.1.5 Moment of Inertia of a Disk

(a)
(b)
(c)
Figure 7.1.6.

Subsubsection 7.1.5.1 About an axis passing through its center of mass and perpendicular to its plane

Consider a disk of radius \(R\) and mass \(M\) is rotating about an axis passing through its center of mass and perpendicular to its plane [Figure 7.1.6.(a)]. To find the moment of inertia of such a disk consider an elementary ring of radius \(r\text{,}\) thickness \(\,dx\text{,}\) and mass \(\,dm\) then the moment of inertia of this elementary ring (annulus) is given by
\begin{equation*} \,dI = \,dm r^{2} \end{equation*}
\begin{equation*} \text{or,}\quad I = \int \,dI = \int\limits_{0}^{R}\left(\frac{M}{\pi R^{2}}(2\pi r\,dr)\right)r^{2} \end{equation*}
\begin{equation*} \because \text{mass of a ring} =(\text{mass per unit area of a disk})\cdot (\text{area of a ring}) \end{equation*}
\begin{equation*} \text{or,}\quad I = \frac{2M}{R^{2}}\int\limits_{0}^{R}\left(r^{3}\,dr\right) \end{equation*}
\begin{equation*} =\frac{2M}{R^{2}}\left.\frac{r^{4}}{4}\right\vert_{0}^{R} \end{equation*}
\begin{equation*} =\frac{M}{2R^{2}}(R^{4}-0)=\frac{1}{2}MR^{2} \end{equation*}

Subsubsection 7.1.5.2 About an axis through its diameter

Using perpendicular axis theorem, [Figure 7.1.6.(b)]
\begin{equation*} I_{z}=I_{x}+I_{y} \end{equation*}
\begin{equation*} \text{But}\quad I_{z}=I_{cm}=\frac{1}{2}MR^{2} \end{equation*}
and by symmetry,
\begin{equation*} I_{x}=I_{y} \end{equation*}
\begin{equation*} \therefore\quad I_{z}=2I_{x} \Rightarrow\quad I_{x}=\frac{I_{z}}{2}= \frac{1}{4}MR^{2} \end{equation*}

Subsubsection 7.1.5.3 About an axis passing through its edge and perpendicular to its plane

Using parallel axis theorem, [Figure 7.1.6.(c)]
\begin{equation*} I_{edge}=I_{cm}+Md^{2}=\frac{1}{2}MR^{2} +MR^{2}= \frac{3}{2}MR^{2} \end{equation*}