Skip to main content

General Physics I:

Section 4.9 Examples D

Example 4.9.1.

A car traveling at 80 km/h rounds a curve of radius 100m which is banked for a speed of 50 km/h. What is the minimum coefficient of friction that would keep the car on the road?
Solution.
Given: \(v_{1} = 50\, km/h = 50 \times \frac{5}{18} \frac{m}{s}=13.88 \,m/s r=100\,m\text{,}\) \(v_{2}=80\,km/h=22.22 \,m/s\text{,}\) \(\mu=?\)
\begin{equation*} \sum F_{x} = ma \end{equation*}
\begin{equation} \text{or,}\quad N\sin\theta+f\cos\theta=\frac{mv_{1}^{2}}{r} \tag{4.9.1} \end{equation}
\begin{equation*} \sum F_{y} = 0 \end{equation*}
\begin{equation} \text{or,}\quad N\cos\theta=f\sin\theta+w \tag{4.9.2} \end{equation}
\begin{equation} \text{or,}\quad N\sin\theta=\frac{mv_{1}^{2}}{r} \qquad [\because f=0]\tag{4.9.3} \end{equation}
\begin{equation} \text{or,}\quad N\cos\theta=mg \qquad [\because f=0] \tag{4.9.4} \end{equation}
\begin{equation*} \text{or,}\quad \tan\theta=\frac{mv^{2}_{1}}{r mg} = \frac{v^{2}_{1}}{r g}=\frac{(13.88)^{2}}{100\times9.8} = 0.196 \end{equation*}
\begin{equation} \therefore \quad \theta = 11.12^{o}\tag{4.9.5} \end{equation}
again, from eqn. (4.9.1), if \(f \neq 0\) we have -
\begin{equation} N\sin\theta+\mu N \cos\theta=\frac{mv_{2}^{2}}{r} \tag{4.9.6} \end{equation}
\begin{equation*} \text{or,}\quad N\left[(0.193)+ \mu (0.981)\right] = m\left(\frac{(22.22)^{2}}{100}\right) \end{equation*}
\begin{equation} \text{or,}\quad m = 0.2025 N\left[0.193+\mu (0.981)\right] \tag{4.9.7} \end{equation}
also, from eqn. (4.9.2), if \(f \neq 0\) we have -
\begin{equation} N\cos\theta-\mu N\sin\theta=mg\tag{4.9.8} \end{equation}
\begin{equation*} \text{or,}\quad N (0.981) -\mu N(0.193) =m(9.8) \end{equation*}
\begin{equation} \text{or,}\quad m = \frac{N}{9.8}\left[0.981 -\mu (0.193)\right] \tag{4.9.9} \end{equation}
also, from eqns. (4.9.7) and (4.9.9), we have -
\begin{equation*} 0.2025 \times 9.8 \left[0.193+\mu (0.981)\right] =\left[0.981 -\mu (0.193)\right] \end{equation*}
\begin{equation} \therefore\quad \mu = 0.15 \tag{4.9.10} \end{equation}

Example 4.9.2.

A rock of mass 0.2 kg is tied to a string and whirled in a vertical circle of radius 1 m.
  1. What is the tension in the string if the rock is traveling at 10 m/s at the bottom?
  2. What is the tension in the string if the rock is traveling at 8 m/s at the top?
  3. What is the tension in the string if the rock is traveling at 9 m/s when the string is horizontal?
  4. What is the tangential acceleration of the rock when it is traveling at 9 m/s and the string is horizontal?
  5. What are the radial and tangential components of the acceleration vector if the rock is traveling at 10 m/s and the string makes an angle of \(45^{o}\) above the horizontal?
Solution.
  1. \(v = 10 m/s,\)
    \begin{equation*} \sum F_{r} = T - w = m a_{r}, \end{equation*}
    \(w = m g, \) \(a_{r} = \frac{v^{2}}{r}, \)
    \begin{equation*} T = 21.96 \,N \end{equation*}
  2. \(v = 8 m/s,\)
    \begin{equation*} \sum F_{r} = T + w = m a_{r}, \end{equation*}
    \(w = m g,\) \(a_{r} = \frac{v^{2}}{r},\)
    \begin{equation*} T = 10.84 \,N \end{equation*}
  3. \(v = 9\, m/s,\)
    \begin{equation*} \sum F_{r} = T = m a_{r}, \end{equation*}
    \(w = m g, \) \(a_{r} = \frac{v^{2}}{r},\)
    \begin{equation*} T = 16.2 \,N \end{equation*}
  4. \(v = 9 m/s,\)
    \begin{equation*} \sum F_{t} = w = m a_{t}, \end{equation*}
    \(w = m g,\) \(a_{t} = 9.8 \,m/s^{2} \)
  5. \(v = 10 m/s; \) \(\theta = 45^{o};\)
    \begin{equation*} \sum F_{r} = T+w\cos\theta = m a_{r}, \end{equation*}
    \begin{equation*} \sum F_{t} = w\sin\theta = m a_{t}; \end{equation*}
    \(a_{r}=100 m/s^{2};\) \(w = m g,\)
    \begin{equation*} a_{t} = 6.93 \,m/s^{2} \end{equation*}

Example 4.9.3.

A thin circular loop of radius \(R\) rotates about a vertical diameter with an angular frequency \(\omega\) inside of which a small bead of mass \(m\) is constrained to slide without friction. Show that the bead remains at its lowest point for \(\omega\leq\sqrt{\frac{g}{R}}\text{.}\)
Solution.
\begin{equation*} N\cos\theta =mg \end{equation*}
\begin{equation*} N\sin\theta =\frac{mv^{2}}{r} =\frac{mr^{2}\omega^{2}}{r} = mr\omega^{2} = mR\sin\theta\omega^{2} \end{equation*}
\begin{equation*} \therefore N = mR\omega^{2} \end{equation*}
\begin{equation*} \text{or,}\quad mR\omega^{2} \cos\theta = mg \end{equation*}
\begin{equation*} \therefore \cos\theta = \frac{g}{R\omega^{2}} \end{equation*}
\(\because \cos\theta\leq 1, \)
\begin{equation*} \frac{g}{R\omega^{2}}\leq 1. \end{equation*}
\begin{equation*} \therefore \omega \leq \sqrt{\frac{g}{R}} \end{equation*}