Skip to main content

General Physics I:

Section 3.4 Examples B

Example 3.4.1.

A particle is moving according to the equation
\begin{equation*} \vec{r}=\left(At^{3}+Bt^{2}\right)\hat{i}+Ct\hat{j} \end{equation*}
where \(A= 3m/s^{2} \text{,}\) \(B= 2 m/s^{2}\text{,}\) and \(C= -1m/s\text{.}\) Find
  1. \(\vec{r}(0)\text{,}\)
  2. \(\vec{r}(2s)\text{,}\)
  3. \(v_{avg}(0,2s)\text{,}\)
  4. \(\vec{v}(-1s)\text{,}\)
  5. \(\vec{v}(3s)\text{,}\)
  6. \(a_{avg}(-1s,3s)\text{,}\) and
  7. \(\vec{a}(0.5s)\text{.}\)
Solution.
\begin{equation*} \vec{r}=\left(At^{3}+Bt^{2}\right)\hat{i}+Ct\hat{j} \end{equation*}
  1. \(\vec{r}(0) = 0\text{,}\)
  2. \begin{align*} \vec{r}(2s)\amp = \left(A\cdot 2^{3}+B \cdot 2^{2}\right)\hat{i}+C\cdot 2\hat{j}\\ \amp = \left(3\cdot 2^{3}+2 \cdot 2^{2}\right)\hat{i}-1\cdot 2\hat{j} \\ \amp = 32\hat{i}-2\hat{j}. \end{align*}
  3. \begin{align*} v_{avg}(0,2s) \amp = \frac{\vec{r}(2s)-\vec{r}(0)}{2-0}\\ \amp = \frac{32\hat{i}-2\hat{j}-0}{2}\\ \amp =16\hat{i}-\hat{j} \end{align*}
  4. \begin{align*} \vec{v}(-1s) \amp = \frac{\,d\vec{r}}{\,dt} \\ \amp = \left(3At^{2}+2Bt\right)\hat{i}+C\hat{j} \\ \amp = \left[3.3.(-1)^{2}+2.2.(-1)\right]\hat{i}+(-1)\hat{j} \\ \amp = 5\hat{i}-\hat{j} \end{align*}
  5. \begin{align*} \vec{v}(3s) \amp = \left(3At^{2}+2Bt\right)\hat{i}+C\hat{j} \\ \amp = \left[3.3.(3)^{2}+2.2.(3)\right]\hat{i}+(3)\hat{j} \\ \amp = 93\hat{i}-\hat{j} \end{align*}
  6. \begin{align*} a_{avg}(-1s,3s) \amp = \frac{v(3s)-v(-1s)}{3-(-1)} \\ \amp = \frac{93\hat{i}-\hat{j}-5\hat{i}+\hat{j}}{4} \\ \amp = 22\hat{i} \end{align*}
    and
  7. \begin{align*} \vec{a}(0.5s)\amp = \frac{\,dv}{\,dt} \\ \amp = \left(6At+2B\right)\hat{i} \\ \amp = [6.3.(0.5) +2.2]\hat{i} \\ \amp =13\hat{i} \end{align*}

Example 3.4.2.

A particle is moving in a circle of radius \(r = 1 \quad m\) with a constant speed of \(v = \pi \quad m/s = 3.14159...\quad m/s\text{.}\) It’s equation of motion is \(\vec{r} = r \cos\omega t\hat{i} + r \sin\omega t\hat{j}\text{,}\) where \(\omega = \pi \quad rad/s\text{.}\) Find:
  1. \(\vec{r}(0)\text{,}\)
  2. \(\vec{r}(1s)\text{,}\)
  3. \(v_{avg}(0,1s)\text{,}\)
  4. \(\vec{v}(2s)\text{,}\)
  5. \(\vec{a_{avg}}(0,2s),\text{,}\)
  6. \(\vec{a}(0.5 s)\text{,}\)
  7. \(\displaystyle a_{r}(1.5 s),\)
  8. \(a_{t}(1.5 s), \) and
  9. \(\displaystyle a(1.5 s)\)
Solution.
  1. \begin{align*} \vec{r}(0) \amp = r \cos\omega 0\hat{i}+ r \sin \omega 0\hat{j} \\ \amp = r \hat{i}= 1 m \hat{i} \end{align*}
  2. \begin{align*} \vec{r}(1s) \amp = r \cos\omega t\hat{i}+ r \sin \omega t\hat{j} \\ \amp = r \cos\pi \hat{i}+ r \sin \pi\hat{j} = -1m\hat{i} \end{align*}
  3. \begin{align*} \vec{v}_{av}(0,1s)\amp =\frac{r_{1}-r_{o}}{t_{2}-t_{1}} \\ \amp = \frac{-1-1}{1-0} =-2 m/s \end{align*}
  4. \begin{align*} \vec{v}(2 s) \amp = \frac{\,d\vec{r}}{\,dt} \\ \amp = -\omega r \sin\omega t\hat{i}+ \omega r \cos \omega t\hat{j} \\ \amp = \pi \cos 2\pi j= \pi \hat{j}= 3.14 m/s \hat{j} \end{align*}
  5. \begin{align*} \vec{a}_{av}(0,2s) \amp =\frac{v_{2}-v_{o}}{t_{2}-t_{1}} = 2\pi m/s \end{align*}
  6. \begin{align*} a(0.5 s) \amp = \frac{\,dv}{\,dt} \\ \amp = -\omega^{2} r \cos\omega t\hat{i} - \omega^{2} r \sin \omega t\hat{j}\\ \amp = -\pi^{2} m/s^{2} \cos\pi/2\hat{i} - \pi^{2} m/s^{2} \sin \pi/2\hat{j}\\ \amp = -\pi^{2} m/s^{2}\hat{j} = - 9.87 m/s^{2}\hat{j} \end{align*}
  7. \begin{align*} a_{r}(1.5 s) \amp = \frac{v^{2}}{r} = \pi^{2} m/s^{2} = 9.87 m/s^{2} \end{align*}
  8. \begin{align*} a_{t}(1.5 s) \amp = r\alpha=r\frac{\,d\omega}{\,dt} = 0 \end{align*}
  9. \begin{align*} a(1.5 s) \amp = \sqrt{a^{2}_{r}+a^{2}_{t}} = \pi m/s^{2} = 3.14 m/s^{2} \end{align*}

Example 3.4.3.

The earth is spinning about its axis with a period of 23 hours 56 min and 4 sec. The equatorial radius of the earth is \(6.38\times10^{6}\) m.
  1. Find the velocity of a person at Barbourville, KY (latitude = \(36^{o}52'\)) as they undergo circular motion about the earth’s axis of rotation.
  2. Find the person’s centripetal acceleration.
Solution.
Given: Time period, T= 23 h 56 min and 4 sec=
\begin{equation*} (23h)\left(60\times 60 \frac{sec}{h}\right)+(56 min)\left(60 \frac{sec}{min}+ 4 sec\right)= 86164 s\text{,} \end{equation*}
\begin{equation*} \text{Radius of the earth,}\quad R= 6.38\times10^{6}m, \end{equation*}
\begin{equation*} \text{angle of latitude,}\quad \lambda = 36^{o}52' = 36^{o}+\left(52\times\frac{1}{60}\right)^{o} = 36.87^{o}. \end{equation*}
Radius of the circle at the position of a person,
\begin{align*} r \amp =R\sin\theta = R\sin\left(\frac{\pi}{2}-\lambda\right) \\ \amp = R\cos\lambda = (6.38\times10^{6})\cos(36.87^{o}) =5.10\times10^{6}m. \end{align*}
  1. \begin{align*} v \amp =r\omega = r\frac{2\pi}{T} \\ \amp = \frac{2\times 5.10\times10^{6}\times \pi}{86164} = 372m/s \end{align*}
  2. \begin{align*} a \amp = \frac{v^{2}}{r} = \frac{372^{2}}{5.10\times 10^{6}} = 2.7\times10^{-2}m/s^{2} \end{align*}

Example 3.4.4.

A baseball is hit at a \(30^{o}\) angle with an initial speed of 30 m/s toward a wall 5 m high located 50 m away. Find each of the following:
  1. How fast is the ball initially traveling horizontally?
  2. How fast is the ball initially traveling vertically?
  3. When does the ball get to the wall?
  4. How high is the ball at that time?
  5. How fast is the ball traveling at that time?
  6. Does the ball clear the fence? By how much?
Solution.
  1. \begin{align*} v_{ox} \amp = v_{o} \cos\theta_{o} = 30\times\cos30^{o}=26 m/s \end{align*}
  2. \begin{align*} v_{oy}\amp = v_{o} \sin\theta_{o} =30\times\sin30^{o}=15 m/s \end{align*}
  3. \begin{align*} x \amp = v_{ox} t \Rightarrow \quad t=\frac{x}{v_{ox}} = \frac{50 m}{26 m/s} = 1.92 s \end{align*}
  4. \begin{align*} y \amp = v_{oy} t -\frac{1}{2} g t^{2} = 15 \times 1.92 -\frac{1}{2}\times9.8\times(1.92)^{2} =10.7 m \end{align*}
  5. \begin{align*} v_{x} \amp = v_{ox} = 26 m/s; \\ v_{y} \amp = v_{oy} - g t = -3.82 m/s;\\ v \amp =\sqrt{v^{2}_{x} + v^{2}_{y}}=26.27 m/s \end{align*}
  6. Yes, by 10.7 m - 5 m = 5.7 m.

Example 3.4.5.

A football is punted at an \(60^{o}\) angle and travels down field a distance of 40 yards from the kicker toward a receiver located 60 yards away.
  1. What was the initial speed of the football?
  2. How long was it in the air?
  3. How high did it go?
  4. How fast must the receiver run to catch the ball?
Solution.
  1. \begin{align*} v_{ox} \amp = vo \cos\theta_{o};\qquad \theta_{o} = 60^{o}; \qquad v_{oy} = vo \sin\theta_{o};\\ x \amp = 40 yd = 120 ft; \quad y_i=0,\quad y_f=0\\ \text{But,} \quad x \amp = v_{ox} t; \qquad \text{and}\quad g = 32 ft/s^{2} \\ y_f-y_i \amp = v_{oy} t - \frac{1}{2} g t^{2};\\ 0 \amp= vo \sin\theta_{o}\left( \frac{x}{vo \cos\theta_{o}}\right)- \frac{1}{2}\times 32 \left(\frac{x}{vo \cos\theta_{o}}\right)^{2}\\ \therefore \quad v_{o} \amp = 62.3 ft/s \end{align*}
  2. \(\displaystyle t = 3.85 s\)
  3. \begin{align*} v_{y}\amp = v_{oy} - g t;\\ v_{y} \amp = 0 \\ t \amp = 1.68 s; \\ y \amp = v_{oy} t - \frac{1}{2}g t^{2} = 45.48 ft \end{align*}
  4. \begin{align*} x \amp = v t; \quad t = 3.85 s\\ x = 60 yd - 40 yd = 20 yd = 60 ft \amp = v t \\ \therefore v \amp = \frac{60}{3.85} =15.58 ft/s \end{align*}

Example 3.4.6.

A man stands on the roof of a 150 m tall building and throws a rock with a velocity of 30m/s at an angle of \(30^{o}\) above the horizontal. Ignore air resistance. Calculate:
  1. The maximum height above the roof reached by the rock.
  2. The magnitude and direction of the velocity of the rock just before it strikes the ground.
  3. The horizontal distance from the base of the building to the point where the rock strikes the ground.
Solution.
Given: \(v_{o}=30m/s {,} \quad y_{f}=y=0 {,} \quad y_{o} =150 m {,}\) and \(\theta = 30^{o};\) \(v_{ox}=v_{o}\cos\theta = 30\cos30=25.98 m/s =v_x;\) \(v_{oy}=v_{o}\sin\theta = 30\sin30=15 m/s. \)
  1. \begin{align*} v^{2}_{f} \amp =v^{2}_{i}-2gh \\ \text{or,} \quad 0 \amp = v^{2}_{oy}-2\times 9.8 \times h\\ \therefore h \amp =11.48 m \end{align*}
  2. \begin{align*} v^{2}_{y} \amp = v^{2}_{oy}-2gy \\ \amp =(15)^{2}-2\times 9.8 \times (-150) = 225+2940 \\ \text{or,}\quad v_{y} \amp =\sqrt{3165}= 56.26 m/s\quad (downward) \\ \therefore v_{f}\amp =\sqrt{v^{2}_{x}+v^{2}_{y}}=\sqrt{(25.98)^{2}+(56.26)^{2}} =61.97 m/s\\ \phi \amp = \tan^{-1}\left( \frac{v_{y}}{v_{x}}\right)= 65.21^{o} \quad\text{[below ground]} \end{align*}
  3. \begin{align*} x \amp =v_{ox}t = 25.98\times 7.27 = 188.87 m \\ \because y_{f}-y_{o}\amp =v_{oy}t-\frac{1}{2}gt^{2}\\ 0-150 \amp =15 t-4.9\times t^{2} \\ \therefore \quad t \amp = -4.21s, 7.27s \end{align*}

Example 3.4.7.

In a test of \(g-suit\) a volunteer is rotated in horizontal circle of radius 7.0 m. what is the period of rotation at which the centripetal acceleration has a magnitude of 10.0 g?
Solution.
\begin{equation*} a=\frac{v^{2}}{r}= \left(\frac{2\pi r}{T}\right)^{2}\frac{1}{r}=\frac{4\pi ^{2}r}{T^{2}} \end{equation*}
\begin{equation*} \therefore T = \sqrt{\frac{4\pi ^{2}r}{10.0g}}=1.68s \end{equation*}

Example 3.4.8.

A 20kg rock is thrown horizontally from the top of a cliff of height 20m from the ground. What must be the minimum speed of the rock so that it falls in a 10 m deep well which is located at 50 m away from the cliff?
Solution.
Given: Height of cliff, \(y=-20m,\) distance of well from the cliff, \(x=50m,\) depth of the well, \(h=-10m\text{.}\) Now
\begin{equation*} v_{o}=v_{ox},\qquad H=y+h = -20-10=-30m \end{equation*}
\begin{equation*} But,\quad H =v_{oy}t+\frac{1}{2}gt^{2} = 0-\frac{1}{2}\times 9.8\times t^{2} \end{equation*}
\begin{equation*} \therefore t=\sqrt{\frac{-30}{-4.9}} =2.47s \end{equation*}
Hence,
\begin{equation*} x=v_{ox}t \end{equation*}
\begin{equation*} or,\quad v_{ox}=v_{o}= \frac{x}{t} = \frac{50}{2.47}=20.24 m/s \end{equation*}

Example 3.4.9.

A ball kicked at an angle of \(60^o\) hits the window of the building 15 m away. If the window is at height of 2 m above the ground find the time taken by the ball to hits it.
Solution.
Given: x=15m, \(\theta=60^o\text{,}\) h=2m.
\begin{equation*} x=v_o\cos\theta. t \end{equation*}
\begin{equation*} \therefore \quad t= \frac{15}{v_o\cos\theta} \end{equation*}
\begin{equation*} y=v_o\sin\theta.t -\frac{1}{2}gt^2 \end{equation*}
\begin{equation*} 2=v_o\sin\theta. \left(\frac{15}{v_o\cos\theta})\right -\frac{1}{2}gt^2 \end{equation*}
\begin{equation*} 2=15.\tan\theta -\frac{1}{2}.9.8.t^2 \end{equation*}
\begin{equation*} \therefore\quad t= 2.21 s \end{equation*}

Example 3.4.10.

A hunter fires the dart on a monkey with 15 m/s velocity at tree 20 m away from him. The monkey is hanging 15 m above the ground and drops out of the tree at a moment the dart is fired.
  1. How long does it take for the dart to get him? and
  2. Find the vertical position of where the monkey meets his end.
Solution.
Given: Position of monkey on the tree, \(y=15 m,\) distance of tree from the hunter, \(x=20m,\) nozle velocity of dart, \(v_{o} =15m/s\text{.}\)
  1. \begin{equation*} \theta = \tan^{-1}\left(\frac{y}{x}\right)=37^{o} \end{equation*}
    \begin{equation*} x =v_{ox}t =v_{o}\cos\theta t \end{equation*}
    \begin{equation*} \therefore \quad t= \frac{x}{v_{o}\cos\theta}=1.67s \end{equation*}
  2. \begin{equation*} h=v_{oy}t+\frac{1}{2}gt^{2}=v_{o}\sin\theta \times (1.67)-\frac{1}{2}\times 9.8\times (1.67)^{2} \end{equation*}
    \begin{equation*} \therefore h= 15\times\sin37^{o}\times 1.67-4.9\times (1.67)^{2} =1.4 m \end{equation*}

Example 3.4.11.

The golf is bouncing from the floor with components of velocity \(v_{x} = 0.662 m/s\) and \(v_{y} = 3.66 m/s.\)
  1. Determine the horizontal distance from the point where the ball left the floor to the point where it hits the floor again.
  2. The ball leaves the floor at x = 0, y = 0. Determine the ball’s y coordinate as a function of x.
Solution.
Given: \(v_{x} = v_{xo}=0.662 m/s, \quad v_{y} =v_{yo}= 3.66 m/s, \quad a_{x}=0, \quad a_{y}=-g.\)
  1. When it hits the ground,
    \begin{align*} h\amp =v_{yo}t+\frac{1}{2}gt^{2}\\ 0 \amp =3.66t-\frac{1}{2}(9.8)t^{2}\\ \therefore \quad t \amp = \frac{2\times3.66}{9.8}=0.747 s\\ and \quad x \amp =v_{xo}t = 0.662\times0.747 = 0.494m \end{align*}
  2. At any point of the flight, we have
    \begin{align*} y_{f} \amp =y_{o}+v_{i}t+\frac{1}{2}gt^{2} \end{align*}
    \begin{equation*} \text{or,}\quad y = 0 + v_{yo}\left[ \frac{x}{v_{xo}}\right]-\frac{1}{2}(9.8) \left[\frac{x}{v_{xo}}\right]^{2} \quad [\because \quad x = v_{xo}t] \end{equation*}
    \begin{equation*} \therefore y = 5.53 x - (11.2/m) x^{2} \end{equation*}

Example 3.4.12.

A centrifuge machine can run with a high acceleration has a radius of 8 m. It starts from rest at t = 0, and during its two-minute acceleration phase it is programmed so that its angular acceleration is given as a function of time in seconds by \(\alpha = 0.192 - 0.0016t \quad rad/s^{2}\text{.}\) At \(t = 120 s,\) what is the magnitude of the acceleration?
Solution.
The angular velocity,
\begin{equation*} \omega = \int\limits_{0}^{120} ([0.192] -[0.0016]t)\,dt \end{equation*}
\begin{equation*} = [0.192][120] - \frac{1}{2}[0.0016][120]^{2}= 11.52 \quad rad/s. \end{equation*}
The normal and tangential components of acceleration are
\begin{equation*} a_{t} = r\alpha = (8)([0.192] - [0.0016][120]) = 0; \end{equation*}
\begin{equation*} a_{n} = r\omega^{2} = (8 m)(11.52 \quad rad/s)^{2} = 1060 \quad m/s^{2}. \end{equation*}
Since the tangential component is zero, then the total acceleration is the same as the normal acceleration \(a = 1060 \quad m/s^{2}=(108g's)\text{.}\)

Example 3.4.13.

A boat moves in flat spiral curve at 2.00 m/s and follows the path \(r = 10\theta \) m, where \(\theta\) is in radians. When \(\theta = 2 \pi\) rad, determine the boat’s velocity in terms of polar coordinates.
Solution.
The velocity along the path, \(v=2.00 m/s\text{.}\) The path function is \(r=10\theta.\) The radial component of velocity is
\begin{equation*} v_{r}=\frac{\,dr}{\,dt} = 10 \frac{\,d\theta}{\,dt} = 10\omega. \end{equation*}
The circumferential component of velocity is
\begin{equation*} v_{\theta}=r\frac{\,d\theta}{\,dt} = r \omega. \end{equation*}
\begin{equation*} \therefore \quad v^{2}=2^{2} =4= v^{2}_{r}+v^{2}_{\theta} =100\omega^{2}+r^{2}\omega^{2} \end{equation*}
At \(\theta=2\pi, \quad r=10\times2\pi=62.8 m. \)
\begin{equation*} \text{or,}\quad 4=\omega^{2}(100+62.8^{2}) \end{equation*}
\begin{equation*} or, \quad \omega = \sqrt{\frac{4}{(100+62.8^{2})}} =0.0314 \quad rad/s \end{equation*}
\begin{equation*} v_{r}= 10\omega = 10\times0.0314 = 0.314 m/s \end{equation*}
\begin{equation*} \text{and}\quad v_{\theta}= r \omega = 62.8\times0.0314 = 1.97 m/s \end{equation*}

Example 3.4.14.

A football is kicked from 40 m away from the goalpost at 25 m/s. The goalpost crossbar is 3.5 m above the ground. Determine the minimum and maximum kicking angles which will take the goal.
Solution.
Given: \(v_{o} =25 m/s,\) \(d=40m,\) and \(h =3.5\) m.
\begin{align*} d \amp = v_{ox}t\\ or, \quad 40 \amp = v_{o} \cos\theta \cdot t \end{align*}
\begin{equation*} \therefore \quad t = \frac{40}{v_{o}\cos\theta} \end{equation*}
\begin{equation*} \text{Now,} \quad y-y_{o} = ut -\frac{1}{2} gt^{2} \end{equation*}
\begin{equation*} or, \quad h = v_{o}\sin\theta\cdot t - 4.9 t^{2} \end{equation*}
\begin{equation*} or, \quad h = v_{o}\sin\theta \cdot {\frac{40}{v_{o}\cos\theta}} - 4.9 \left(\frac{40}{v_{o}\cos\theta}\right)^{2} \end{equation*}
\begin{equation*} or, \quad 3.5 = 40\tan\theta - \frac{7840}{400} \sec^{2}\theta \end{equation*}
\begin{equation*} or, \quad 3.5 = 40\tan\theta - \frac{7840}{625} (1+\tan^{2}\theta) \end{equation*}
\begin{equation*} or, \quad 16.04 = 40\tan\theta - 12.54\tan^{2}\theta \end{equation*}
\begin{equation*} or, \quad 12.54 \tan^{2}\theta - 40\tan\theta + 16.04 = 0 \end{equation*}
\begin{equation*} or,\quad \tan\theta = \dfrac{-40\pm\sqrt{40^{2}-4\times 12.54\times 16.04}}{2\times 12.54} = 2.73, 0.472 \end{equation*}
\begin{equation*} \therefore \quad \theta = 70^{o}, \quad 25^{o} \end{equation*}

Example 3.4.15.

A point P on wheel of radius 0.5 m which was touching the road initially had made a 3/4 revolution on the road. Find its displacement.
Solution.
\begin{equation*} \vec{D}= \frac{3}{4}(2\pi r)\hat{i}+r\hat{i}+ r\hat{j} \end{equation*}
Note: \(\frac{3}{4}(2\pi r)\) is the distance of center to center displacement on x axis but point P is still r distance ahead of new point of contact.
\begin{equation*} or, \quad \vec{D} = 2.86\hat{i} +0.5\hat{j} \end{equation*}
\begin{equation*} \therefore \quad D = 2.9 m \end{equation*}