\begin{equation*}
Tr (AB) = \sum\limits_{i} (AB)_{ij} = \sum\limits_{i}\left\{\sum\limits_{j} a_{ij}b_{ji}\right\}
\end{equation*}
\begin{equation*}
= \sum\limits_{j}\sum\limits_{i}a_{ij}b_{ji} = \sum\limits_{j}\sum\limits_{i}b_{ji}a_{ij}
= \sum\limits_{j}(BA)_{ji} = Tr(BA)
\end{equation*}
This holds even if \(AB \neq BA\text{.}\) It can be generilezed to \(Tr(ABCD)= Tr(DCBA)\text{.}\)