Example 6.6.1.
Using Laplace Transforms, find the solution of the initial value problem.
\begin{equation*}
y''-4y'+4y =64\sin 2t
\end{equation*}
and \(y(0) = 0, y'(0)=1\text{.}\)
Solution.
\begin{equation}
y''-4y'+4y =64\sin 2t\tag{6.6.1}
\end{equation}
Taking Laplace Transform on both sides of equation (6.6.1), we have -
\begin{equation*}
\mathscr{L}[y''-4y'+4y] = \mathscr{L}[64\sin 2t]
\end{equation*}
or,
\begin{equation*}
\mathscr{L}[y'']-4\mathscr{L}[y']+4\mathscr{L}[y] = 64\mathscr{L}[\sin 2t]
\end{equation*}
or,
\begin{equation*}
s^{2}\mathscr{L}[y(t)]-sy(0)-y'(0)-4[s\mathscr{L}y(t)-y(0)]+4\mathscr{L}[y(t)]=64\frac{2}{s^{2}+4}
\end{equation*}
or,
\begin{equation*}
s^{2}Y(s)-sy(0)-y'(0)-4sY(s)+4y(0)+4y(s)=\frac{128}{s^{2}+4}
\end{equation*}
putting \(y(0) =0\) and \(y'(0) = 1\text{,}\) we get -
\begin{equation*}
s^{2}Y(s)-s.0-1-4sY(s)+40+4Y(s)=\frac{128}{s^{2}+4}
\end{equation*}
or,
\begin{equation*}
Y(s)[s^{2}-4s+4]=1+ \frac{128}{s^{2}+4}
\end{equation*}
or,
\begin{equation*}
(s-2)^{2}Y(s) = 1+ \frac{128}{s^{2}+4}
\end{equation*}
or,
\begin{equation*}
Y(s) = \frac{1}{(s-2)^{2}}+ \frac{128}{(s^{2}+4)(s-2)^{2}}
\end{equation*}
\begin{equation*}
= \frac{1}{(s-2)^{2}}-\frac{8}{(s-2)}+\frac{16}{(s-2)^{2}}+\frac{8s}{s^{2}+4}
\end{equation*}
\begin{equation*}
\because \quad Y(s) = \mathscr{L}[y(t)]
\end{equation*}
\begin{equation*}
\therefore \quad y(t) = -8e^{2t}+17te^{2t}+8\cos 2t
\end{equation*}