Skip to main content

Section 6.2 ExamplesA

Example 6.2.1.

Find the Fourier Transform of
\begin{equation*} f(x) = \begin{cases} x, & |x| \leq a \quad \text{or,} \quad (-a \leq x\leq a)\\ 0, & |x| \gt a \quad \text{or,} \quad (-a \gt x \gt a) \end{cases} \end{equation*}
Solution.
Fourier transform of \(f(x)\) is
\begin{equation*} \mathscr{F}\{f(x)\} = F(s) = \int\limits_{0}^{\infty}f(x)e^{-ikx} \, dx \end{equation*}
\begin{equation*} =\int\limits_{-\infty}^{-a}x e^{-isx} \, dx+ \int\limits_{-a}^{a}x e^{-isx} \, dx +\int\limits_{a}^{\infty}0. e^{-isx} \, dx \end{equation*}
\begin{equation*} =\int\limits_{\infty}^{a}f(-t)e^{+ist} \,(-dt)+ \left[\frac{x.e^{-isx}}{-is}+\frac{e^{-isx}.1}{s^{2}}\right]_{-a}^{a}+0 \end{equation*}
\begin{equation*} =\int\limits_{a}^{\infty}0.e^{+ist} \,(dt)+ \frac{a}{is}\left(e^{-isa}+e^{isa}\right)+\frac{1}{s^{2}}\left(e^{-isa}-e^{isa}\right) \end{equation*}
\begin{equation*} =0+ \frac{ia}{s}.2\cos sa + \frac{1}{s^{2}}.2\sin sa \end{equation*}
\begin{equation*} =\frac{2i}{s^{2}}(sa\cos sa- \sin sa) \end{equation*}

Example 6.2.2.

Find the Fourier transform of \(f(x)\) defined by
\begin{equation*} f(x) = \begin{cases} 1, & |x| \lt a \\ 0, & |x| \gt a \end{cases} \end{equation*}
and hence evalute
  1. \begin{equation*} \int\limits_{-\infty}^{\infty}\frac{\sin sa.\cos sa}{s}\,ds \end{equation*}
  2. \begin{equation*} \int\limits_{0}^{\infty}\frac{\sin s}{s}\,ds \end{equation*}
Solution.
we have
\begin{equation*} \mathscr{F}\{f(x)\}=F(s)=\int\limits_{-\infty}^{\infty}f(x) e^{-isx}\,dx \end{equation*}
\begin{equation*} = \int\limits_{-\infty}^{a}f(x) e^{-isx}\,dx + \int\limits_{-a}^{a}f(x) e^{-isx}\,dx + \int\limits_{a}^{\infty}f(x) e^{-isx}\,dx \end{equation*}
\begin{equation*} =\int\limits_{\infty}^{a}f(-t) e^{+ist}\,(-dt)+\int\limits_{-a}^{a}1. e^{-isx}\,(dx)+ \int\limits_{a}^{\infty}0. e^{-isx}\,dx \end{equation*}
\begin{equation*} =\int\limits_{a}^{\infty}f(-t) e^{+ist}\,(dt)+\left[\frac{e^{-isx}}{-is}\right]_{a}^{a}+0 \end{equation*}
\begin{equation*} = \int\limits_{a}^{\infty}0. e^{+ist}\,(dt)+\left[\frac{e^{isa}-e^{-isa}}{is}\right]+0 \end{equation*}
\begin{equation} = \frac{2}{s}\sin sa\tag{6.2.1} \end{equation}
Again, if
\begin{equation*} \mathscr{F}\{f(x)\}=F(s)=\int\limits_{-\infty}^{\infty}f(x) e^{-isx}\,dx \end{equation*}
then
\begin{equation*} f(x) = \mathscr{F}^{-1}\{F(s)\} = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}F(s) e^{isx}\,ds \end{equation*}
\begin{equation*} \therefore \quad \int\limits_{-\infty}^{\infty}F(s) e^{isx}\,ds = 2\pi f(x) = \begin{cases} 2\pi, & \text{if} \quad |x| \lt a \\ 0, & \text{if} \quad |x| \gt a \end{cases} \end{equation*}
but,
\begin{equation*} F(s) = \frac{2\sin sa}{s}, \end{equation*}
from (6.2.1)
\begin{equation*} \therefore \quad \int\limits_{-\infty}^{\infty}\left(\frac{2\sin sa}{s}\right)(\cos sx+i\sin sx)\, dx \end{equation*}
\begin{equation*} = \begin{cases} 2\pi, & \text{if} \quad |x| \lt a\\ 0, & \text{if} \quad |x| \gt a \end{cases} \end{equation*}
or,
\begin{equation*} \int\limits_{-\infty}^{\infty}\left(\frac{\sin sa\cos sx}{s}\right)\,ds +i \int\limits_{-\infty}^{\infty}\left(\frac{\sin sa\sin sx}{s}\right)\,ds \end{equation*}
\begin{equation*} = \begin{cases} \pi, & \text{if} \quad |x| \lt a\\ 0, & \text{if} \quad |x| \gt a \end{cases} \end{equation*}
equating real parts on both sides, we get -
\begin{equation} \int\limits_{-\infty}^{\infty}\left(\frac{\sin sa\cos sx}{s}\right)\,ds = \begin{cases} \pi, & \text{if} \quad |x| \lt a \\ 0, & \text{if} \quad |x| \gt a \end{cases} \tag{6.2.2} \end{equation}
Also, if \(x=0, a=1,\) then from expression (6.2.2) we have
\begin{equation*} \int\limits_{-\infty}^{\infty}\frac{\sin s}{s}\,ds =\pi \end{equation*}
[for \(|x| \lt a \Rightarrow 0 \lt 1,\) and \(\cos 0 =1\)] Or,
\begin{equation*} 2\int\limits_{0}^{\infty}\frac{\sin s}{s}\,ds =\pi \end{equation*}
or,
\begin{equation*} \int\limits_{0}^{\infty}\frac{\sin s}{s}\,ds=\frac{\pi}{2} \end{equation*}

Example 6.2.3.

Find
\begin{equation*} \mathscr{F}\{f(x)\}\quad \text{where}\quad f(x) = \begin{cases} 1-x^{2}, & \text{if} \quad |x| \leq 1\\ 0, & \text{if} \quad |x| \gt 1 \end{cases}. \end{equation*}
Solution.
Given that
\begin{equation*} f(x) = \begin{cases} 1-x^{2}, & -1 \leq x \leq 1\\ 0, & -1 \gt x \gt 1 \end{cases} \end{equation*}
\begin{equation*} \therefore \mathscr{F}\{f(x)\} = F(s) = \int\limits_{-\infty}^{\infty}f(x) e^{-isx}\,dx \end{equation*}
\begin{equation*} = \int\limits_{-\infty}^{-1}f(x) e^{-isx}\,dx+\int\limits_{-1}^{1}f(x) e^{-isx}\,dx + \int\limits_{1}^{\infty}f(x) e^{-isx}\,dx \end{equation*}
\begin{equation*} = \int\limits_{\infty}^{1}f(-y) e^{isy}\,(-dy)+\int\limits_{-1}^{1}(1-x^{2}) e^{-isx}\,dx + \int\limits_{1}^{\infty}0. e^{-isx}\,dx \end{equation*}
\begin{equation*} =\int\limits_{1}^{\infty}f(-y) e^{isy}\,(dy)+\int\limits_{-1}^{1}(1-x^{2}) e^{-isx}\,dx + 0 \end{equation*}
\begin{equation*} = \int\limits_{1}^{\infty}0. e^{isy}\,(dy)+\int\limits_{-1}^{1}(1-x^{2}) e^{-isx}\,dx + 0 \end{equation*}
\begin{equation*} = \int\limits_{-1}^{1}(1-x^{2}) e^{-isx}\,dx = \int\limits_{-1}^{1} e^{-isx}\,dx - \int\limits_{-1}^{1} x^{2} e^{-isx}\,dx \end{equation*}
\begin{equation*} =\left[\frac{e^{-isx}}{-is}\right]_{-1}^{1} - \left[\frac{x^{2}e^{-isx}}{-is}-2x \frac{e^{-isx}}{i^{2}s^{2}}+2\frac{e^{-isx}}{+is^{3}}\right]_{-1}^{1} \end{equation*}
\begin{equation*} =\frac{1}{-is}\left[e^{-is}-e^{is}\right]-\frac{e^{-is}}{-is}+2\frac{e^{-is}}{-s^{2}}-2\frac{e^{-is}}{is^{3}}+\frac{e^{is}}{-is}+2\frac{e^{is}}{-s^{2}}+2\frac{e^{is}}{is^{3}} \end{equation*}
\begin{equation*} =\frac{1}{-is}\left[e^{-is}-e^{is}\right]+\frac{1}{is}\left[e^{-is}-e^{is}\right] - \frac{2}{s^{2}}\left[e^{-is}+e^{is}\right]+\frac{2}{is^{3}}\left[e^{is}-e^{-is}\right] \end{equation*}
\begin{equation*} =-\frac{2s}{s^{3}}\left[e^{-is}+e^{is}\right]-\frac{2i}{s^{3}}\left[e^{is}-e^{-is}\right] \end{equation*}
\begin{equation*} = \frac{1}{s^{3}}(4\sin s-4s\cos s). \end{equation*}

Example 6.2.4.

Find the Fourier sine and cosine transform of \(f(x) =x^{2}, 0 \lt x \lt 4\text{.}\)
Solution.
\begin{equation*} \mathscr{F}\{f(x)\} = F(s) = \int\limits_{0}^{t}f(x) \frac{\sin n\pi x}{l}\,dx \end{equation*}
\begin{equation*} = \int\limits_{0}^{4}x^{2} \frac{\sin n\pi x}{4}\,dx \end{equation*}
\begin{equation*} =\left[-\frac{4}{n\pi}x^{2}\cos \frac{n\pi x}{4}\right]_{0}^{4}+ \int\limits_{0}^{4}2x\frac{4}{n\pi}\cos \frac{n\pi x}{4}\,dx \end{equation*}
\begin{equation*} =-\frac{4^{3}}{n\pi}\cos n\pi+ \frac{8}{n\pi}\left[\frac{4x}{n\pi} \sin \frac{n\pi x}{4}+ \frac{4^{2}}{n^{2}\pi^{2}}\cos \frac{n\pi x}{4}\right]_{0}^{4} \end{equation*}
similarly Fourier cosine transform can be obtained.

Example 6.2.5.

Find Fourier sine and cosine transform of
\begin{equation*} f(x) = \begin{cases} 1, & 0 \lt x \lt a\\ 0, & x \gt a \end{cases}. \end{equation*}
Solution.
we have
\begin{equation*} \mathscr{F}_{s}\{f(x)\} = F(s) = \int\limits_{0}^{\infty}f(x) \sin sx \,dx \end{equation*}
\begin{equation*} = \int\limits_{0}^{a}1.\sin sx \,dx = \left[-\frac{\cos sx}{s}\right]_{0}^{a} = -\frac{\cos as}{s}+\frac{1}{s} \end{equation*}
and
\begin{equation*} \mathscr{F}_{c}\{f(x)\} = F(s) = \int\limits_{0}^{\infty}f(x) \cos sx \,dx\ \end{equation*}
\begin{equation*} = \int\limits_{0}^{a}1.\cos sx \,dx = \left[-\frac{\sin sx}{s}\right]_{0}^{a} = \frac{\sin as}{s}. \end{equation*}

Example 6.2.6.

Find
\begin{equation*} \mathscr{F}_{s}\{f(x)\} \end{equation*}
and
\begin{equation*} \mathscr{F}_{c}\{f(x)\} \end{equation*}
if
\begin{equation*} f(x) = \begin{cases} x, & \text{for} \quad 0 \lt x \lt 1\\ 2-x, & \text{for} \quad 1 \lt x \lt 2\\ 0, & \text{for} \quad x \gt 2 \end{cases} \end{equation*}
Solution.
we have
\begin{equation*} \mathscr{F}_{s}\{f(x)\} =\int\limits_{0}^{\infty} f(x)\sin sx \,dx \end{equation*}
\begin{equation*} =\int\limits_{0}^{1} f(x)\sin sx \,dx + \int\limits_{1}^{2} f(x)\sin sx \,dx + \int\limits_{2}^{\infty} f(x)\sin sx \,dx \end{equation*}
\begin{equation*} =\int\limits_{0}^{1} x\sin sx \,dx + \int\limits_{1}^{2} (2-x)\sin sx \,dx + \int\limits_{2}^{\infty} 0.\sin sx \,dx \end{equation*}
\begin{equation*} =\left[-\frac{x\cos sx}{s}+\frac{\sin sx}{s^{2}}\right]_{0}^{1} +\left[ \frac{2\cos sx}{s}\right]_{1}^{2} \end{equation*}
\begin{equation*} -\left[- \frac{x\cos sx}{s}+ \frac{\sin sx}{s^{2}}\right]_{1}^{2} \end{equation*}
\begin{equation*} =\left[-\frac{\cos s}{s}+\frac{\sin s}{s^{2}}\right]-\frac{2}{s}\cos 2s+\frac{2}{s}\cos s \end{equation*}
\begin{equation*} +\frac{2\cos 2s-\cos s}{s}- \left[\frac{\sin 2s-\sin s}{s^{2}}\right] \end{equation*}
\begin{equation*} = \frac{2\sin s-2\sin s\cos s}{s^{2}}= \frac{2(1-\cos s)\sin s}{s^{2}}. \end{equation*}

Example 6.2.7.

Find the Fourier Cosine transform of \(e^{-x^{2}/2}\text{.}\)
Solution.
By definition
\begin{equation*} \mathscr{F}_{c}\{e^{-x^{2}/2}\}=\int\limits_{0}^{\infty}e^{-x^{2}/2}\cos sx\,dx= I \quad (say) \end{equation*}
Now, differentiating w.r.t. ’s’, we get -
\begin{equation*} \frac{\,dI}{\,ds}=\int\limits_{0}^{\infty}\left(-xe^{-x^{2}/2}\right)\sin sx\,dx \end{equation*}
\begin{equation*} = \left[\left.e^{-x^{2}/2} \sin sx\right\vert_{0}^{\infty} - \int\limits_{0}^{\infty} s.\cos sx. e^{-x^{2}/2}\,dx\right] \end{equation*}
\begin{equation*} =0-s\int\limits_{0}^{\infty}e^{-x^{2}/2} \cos sx\,dx = -sI \end{equation*}
or,
\begin{equation*} \frac{\,dI}{\,ds} =-sI \end{equation*}
or,
\begin{equation*} \frac{\,dI}{I} = -s\,ds \end{equation*}
on integrating, we get -
\begin{equation*} \log I = -\frac{s^{2}}{2} +\log A \end{equation*}
or,
\begin{equation} I=Ae^{-s^{2}/2} \tag{6.2.3} \end{equation}
when s =0,
\begin{equation*} I = \int\limits_{0}^{\infty}e^{-x^{2}/2}\cos 0\,dx = \frac{1}{2}\sqrt{\pi/2} \end{equation*}
putting this value in eqn. (6.2.3), we get -
\begin{equation*} \frac{\sqrt{\pi}}{2\sqrt{2}}=A \end{equation*}
\begin{equation*} \therefore I = \frac{\sqrt{\pi}}{2\sqrt{2}}e^{-s^{2}/2}. \end{equation*}

Example 6.2.8.

Show that Fourier transform of \(e^{-x^{2}/2}\) is its own Fourier transform.
Solution.
we have
\begin{equation*} \mathscr{F}\{f(x)\} =F(s) = \int\limits_{-\infty}^{\infty}e^{-isx}f(x) \,dx \end{equation*}
\begin{equation*} = \int\limits_{-\infty}^{\infty}e^{-x^{2}/2}e^{-isx}\,dx \end{equation*}
\begin{equation*} =\int\limits_{-\infty}^{\infty}e^{-\frac{1}{2}(x^{2}+2isx)}\,dx = \int\limits_{-\infty}^{\infty}e^{-\frac{1}{2}(x+is)^{2}s^{2}/2}\,dx \end{equation*}
\begin{equation*} = e^{-s^{2}/2}\int\limits_{-\infty}^{\infty}e^{-\frac{1}{2}(x+is)^{2}}\,dx \end{equation*}
put \(x+is = y\) so that \(\,dx =\,dy\text{.}\)
\begin{equation*} \therefore F(s)= e^{-s^{2}/2}\int\limits_{-\infty}^{\infty}e^{-y^{2}/2}\,dy = e^{-s^{2}/2}.1 \end{equation*}
[\(\because \int\limits_{-\infty}^{\infty}e^{-y^{2}/2}\,dy =1\)] Hence, \(f(x)=e^{-x^{2}}\) is its own Fourier transform.

Example 6.2.9.

Find \(\mathscr{F}_{s}^{-1}\{e^{-\pi x}\}\text{.}\)
Solution.
\begin{equation*} \mathscr{F}_{s}^{-1}\{e^{-\pi x}\} =F_{s}(s) = \frac{2}{\pi}\int\limits_{0}^{\infty}e^{-\pi s}\sin sx\,ds \end{equation*}
\begin{equation*} = \frac{2}{\pi}\frac{x}{\pi^{2}+x^{2}} = \frac{2x}{\pi(\pi^{2}+x^{2})}. \end{equation*}

Example 6.2.10.

Find complex Fourier transform of \(e^{-|x|}\text{.}\)
Solution.
\begin{equation*} \mathscr{F}\{e^{-|x|}\} = F(s)=\int\limits_{-\infty}^{\infty}e^{-|x|}e^{-isx}\,dx \end{equation*}
\begin{equation*} = \int\limits_{-\infty}^{0}e^{-|x|}e^{-isx}\,dx + \int\limits_{0}^{\infty}e^{-|x|}e^{-isx}\,dx \end{equation*}
\begin{equation*} =\int\limits_{-\infty}^{0}e^{x}e^{-isx}\,dx + \int\limits_{0}^{\infty}e^{-x}e^{-isx}\,dx \end{equation*}
\begin{equation*} = \int\limits_{-\infty}^{0}e^{x(1-is)}\,dx + \int\limits_{0}^{\infty}e^{-x(1+is)}\,dx \end{equation*}
\begin{equation*} =\left[\left.\frac{e^{x(1-is)}}{1-is}\right\vert_{-\infty}^{0}+\left.\frac{e^{-x(1+is)}}{-(1-is)}\right\vert_{0}^{\infty}\right] \end{equation*}
\begin{equation*} = \frac{1}{1-is}+\frac{1}{1+is}= \frac{2}{1+s^{2}}. \end{equation*}

Example 6.2.11.

Find the Fourier sine transform of the function
\begin{equation*} f(x) = \begin{cases} \sin x, & \text{when} \quad 0 \lt x \lt a \\ 0, & \text{when} \quad x \gt a \end{cases}. \end{equation*}
Solution.
\begin{equation*} \mathscr{F}_{s}\{f(x)\}=\int\limits_{0}^{\infty}f(x) \sin sx\,dx \end{equation*}
\begin{equation*} = \int\limits_{0}^{a}f(x) \sin sx\,dx + \int\limits_{a}^{\infty}f(x) \sin sx\,dx \end{equation*}
\begin{equation*} =\int\limits_{0}^{a}f(x) \sin x\sin sx\,dx + 0 \end{equation*}
\begin{equation*} = \frac{1}{2}\int\limits_{0}^{a}\left[\cos (1-s)x-\cos(1+s)x\right]\,dx \end{equation*}
\begin{equation*} =\frac{1}{2}\left[\frac{\sin (1-s)x}{1-s}-\frac{\sin (1+s)x}{1+s}\right]_{0}^{a} \end{equation*}
\begin{equation*} = \frac{1}{2}\left[\frac{\sin (1-s)a}{1-s}-\frac{\sin (1+s)a}{1+s}\right]. \end{equation*}

Example 6.2.12.

Find the Fourier sine and cosine transform of \(x\text{.}\)
Solution.
\begin{equation} \mathscr{F}_{c}\{f(x)\} =F_{c}(s) = \int\limits_{0}^{\infty}f(x) \cos sx \,dx = \int\limits_{0}^{\infty} x \cos sx \,dx \tag{6.2.4} \end{equation}
\begin{equation} \mathscr{F}_{s}\{f(x)\} =F_{s}(s) = \int\limits_{0}^{\infty} x \sin sx \,dx \tag{6.2.5} \end{equation}
Let \(F(s) =\int\limits_{0}^{\infty} x e^{-isx} \,dx\) put \(isx=y\) so that \(\,dx=\,dy/s\text{.}\)
\begin{equation*} \therefore F(s) = \int\limits_{0}^{\infty}\frac{y}{is}e^{-y}\frac{\,dy}{is} \end{equation*}
\begin{equation*} = -\frac{1}{s^{2}}\int\limits_{0}^{\infty}y^{2-1}e^{-y}\,dy = -\frac{\Gamma(2)}{s^{2}}. \end{equation*}
\([\because \Gamma(n+1) =n!]\)

Application of Fourier Transform to the solution of One Dimensional Equation.

As Fourier transform method is very useful to find the solutoin of partial differential equation, we can use it solve diffusion equation, wave equation, and heat flow equation in boundary vlaue conditions.

Example 6.2.13.

Solve
\begin{equation} \frac{\partial u(x,t)}{\partial t}=k\frac{\partial^{2}u(x,t)}{\partial x^{2}}\tag{6.2.6} \end{equation}
(heat flow or diffusion equation) where \(u(0,t) =0\) and
\begin{equation} u(x,0) = \begin{cases} 1, & x \lt 1\\ 0, & x \gt 1 \end{cases}\tag{6.2.7} \end{equation}
also \(u(x,t)\) is bounded.
Solution.
As \((u)_{x=0}\) is given we can apply sine transform to the given equation so that
\begin{equation*} \mathscr{F}_{s}\{\frac{\partial u}{\partial t}\} =k\mathscr{F_{s}}\{\frac{\partial^{2}u}{\partial x^{2}}\} \end{equation*}
or,
\begin{equation*} \int\limits_{0}^{\infty}\frac{\partial u}{\partial t}\sin sx\,dx = k \int\limits_{0}^{\infty}\frac{\partial^{2}u}{\partial x^{2}}\sin sx\,dx \end{equation*}
or,
\begin{equation*} \frac{\partial}{\partial t}\int\limits_{0}^{\infty}u\sin sx\,dx = k\{\left.\frac{\partial u}{\partial x}\sin sx\right\vert_{0}^{\infty}-s\int\limits_{0}^{\infty}\frac{\partial u}{\partial x}\cos sx\,dx\} \end{equation*}
or,
\begin{equation*} \frac{\partial}{\partial t}\bar{u_{s}}=k\{0-s\int\limits_{0}^{\infty}\frac{\partial u}{\partial x}\cos sx\,dx\} \end{equation*}
\([\because {\frac{\partial u}{\partial x}\to 0}\) as \({x\to \infty}\)]
\begin{equation*} = ks\{\left.u\cos sx\right\vert_{0}^{\infty}+s \int\limits_{0}^{\infty}u\sin sx\,dx\} \end{equation*}
\begin{equation*} =ks\{u(0,t)\cos (0.s) - s\bar{u}_{s}\} \end{equation*}
as \({u\to 0}\text{,}\) for \({x \to \infty}\text{.}\) Or,
\begin{equation} \frac{\partial}{\partial t}\bar{u}_{s} = ks^{2}\bar{u}_{s}\tag{6.2.8} \end{equation}
The solution of this equation is
\begin{equation} \bar{u}_{s} = A e^{-ks^{2}t}\tag{6.2.9} \end{equation}
To find \(A\text{,}\) set \(t=0\) in equation (6.2.9), then
\begin{equation*} A=\bar{u}_{s}(s,0) = \int\limits_{0}^{\infty}u(x,0)\sin sx\,dx \end{equation*}
or,
\begin{equation*} A = \int\limits_{0}^{1}1.\sin sx\,dx + \int\limits_{1}^{\infty}0.\sin sx\,dx \end{equation*}
or,
\begin{equation*} A = -\left.\frac{\cos sx}{s}\right\vert_{0}^{1} = \frac{1-\cos s}{s} \end{equation*}
substituting this value of \(A\) in equation (6.2.9), we have
\begin{equation} \bar{u}_{s}=\frac{1-\cos s}{s}e^{-ks^{2}t}\tag{6.2.10} \end{equation}
applying inverse Fourier sine transform, we have -
\begin{equation} u(x,t) = \frac{2}{\pi}\int\limits_{0}^{\infty}\frac{1-\cos s}{s}e^{-ks^{2}t}\sin sx\,ds\tag{6.2.11} \end{equation}

Example 6.2.14.

Solve
\begin{equation*} \frac{\partial^{2}y(x,t)}{\partial x^{2}}=\frac{1}{v^{2}}\frac{\partial^{2}y(x,t)}{\partial t^{2}}; \end{equation*}
where \(y(x,0) = f(x)\) and
\begin{equation*} \left.\frac{\partial y}{\partial t}\right\vert_{t=0}=0. \end{equation*}
Solution.
The given equation is
\begin{equation} \frac{\partial^{2}y(x,t)}{\partial x^{2}}=\frac{1}{v^{2}}\frac{\partial^{2}y(x,t)}{\partial t^{2}}\tag{6.2.12} \end{equation}
and
\begin{equation} \mathscr{F}\{y(x,t)\} = Y(s,t) = \int\limits_{-\infty}^{\infty}y(x,t) e^{-isx}\,dx\tag{6.2.13} \end{equation}
Now, equation (6.2.12) becomes
\begin{equation*} \mathscr{F}\{\frac{\partial^{2}y}{\partial x^{2}}\} = \frac{1}{v^{2}}\mathscr{F}\{\frac{\partial^{2}y}{\partial t^{2}}\} \end{equation*}
or,
\begin{equation*} (is)^{2}\mathscr{F}\{y(x,t)\} = \frac{1}{v^{2}}\frac{\partial^{2}}{\partial t^{2}}Y(s,t) \end{equation*}
or,
\begin{equation*} -s^{2}Y(s,t) = \frac{1}{v^{2}}\frac{\partial^{2}}{\partial t^{2}}Y(s,t) \end{equation*}
or,
\begin{equation} \frac{\partial^{2}Y}{\partial t^{2}}+v^{2}s^{2}Y =0\tag{6.2.14} \end{equation}
This is a second order differential equation. whose solution is given as
\begin{equation} Y(s,t) = C_{1}e^{+ivst}+C_{2}e^{-ivst}\tag{6.2.15} \end{equation}
Imposing the initial condition in equation (6.2.13)
\begin{equation} Y(s,0) = \int\limits_{-\infty}^{\infty}y(x,0) e^{-isx}\,dx = \int\limits_{-\infty}^{\infty}f(x) e^{-isx}\,dx=F(s)\tag{6.2.16} \end{equation}
Also, from equation ,(6.2.16), we have
\begin{equation} Y(s,0) = C_{1}+C_{2}\tag{6.2.17} \end{equation}
Therefore, from equations (6.2.16) and (6.2.17), we have
\begin{equation} F(s) = C_{1}+C_{2}\tag{6.2.18} \end{equation}
now, differentiating equation (6.2.13) and (6.2.17), we get -
\begin{equation*} Y'(s,t) = \int\limits_{-\infty}^{\infty}\left(\frac{\partial y}{\partial t}\right)e^{-isx}\,dx = ivsC_{1}e^{ivst} -ivsC_{2}e^{-ivst} \end{equation*}
or,
\begin{equation*} Y'(s,0) = \int\limits_{-\infty}^{\infty}\left(\frac{\partial y}{\partial t}\right)_{t=0}e^{-isx}\,dx = 0= ivs C_{1} -ivs C_{2} \end{equation*}
\begin{equation} \therefore \quad C_{1} = C_{2} \tag{6.2.19} \end{equation}
Hence,
\begin{equation} Y(s,t) = \frac{F(s)}{2}\left[e^{+ivst}+e^{-ivst}\right]\tag{6.2.20} \end{equation}
[from equations (6.2.19), (6.2.18), and (6.2.15)] Now, the inverse Fourier transform is
\begin{equation*} \mathscr{F}^{-1}\{Y(s,t)\}=y(x,t) = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}Y(s,t)e^{isx\,ds} \end{equation*}
\begin{equation*} = \frac{1}{4\pi}\int\limits_{-\infty}^{\infty}F(s)\left[e^{ivst}+e^{-ivst}\right]\,ds \end{equation*}
[from eqn.(6.2.20)]
\begin{equation*} =\frac{1}{4\pi}\int\limits_{-\infty}^{\infty}\{f(x')e^{-isx}\,dx'\}\{\left[e^{+ivst}+ e^{-ivst}\right]e^{isx}\}\,ds \end{equation*}
\begin{equation*} =\frac{1}{4\pi}\int\limits_{-\infty}^{\infty}\{f(x')\,dx'\}\{\int\limits_{-\infty}^{\infty}\left[e^{is(x-x' +vt)}+ e^{is(x-x'-vt)}\right]\,ds\} \end{equation*}
\begin{equation*} =\frac{1}{2}\int\limits_{-\infty}^{\infty}\{f(x')\,dx'\}\{\delta(x+vt-x') + \delta(x-vt-x')\} \end{equation*}
\begin{equation} \mathscr{F}^{-1}\{Y(s,t)\}=y(x,t) = \frac{1}{2}\left[f(x+vt) +f(x-vt)\right] \tag{6.2.21} \end{equation}
This is the general solution of wave equation. [from Dirac Delta function]
\begin{equation*} \delta (x) =\frac{1}{2\pi} \int\limits_{-\infty}^{\infty}e^{isx}\,ds \end{equation*}
and
\begin{equation*} \int\limits_{-\infty}^{\infty}f(x) \delta (a-x)\,dx =f(a)]. \end{equation*}

Example 6.2.15.

Find the Fourier sine and cosine transform of \(f(x) = \frac{e^{-ax}}{x}\text{.}\)
Solution.
\begin{equation*} \mathscr{F}_{s}\{f(x)\} = F(s) = \int\limits_{0}^{\infty}f(x)\sin sx\,dx = \int\limits_{0}^{\infty}\frac{e^{-ax}}{x}\sin sx\,dx \end{equation*}
Differentiating w.r.t. ’s’, we get-
\begin{equation*} \frac{\,d}{\,ds}\left[F(s)\right] = \int\limits_{0}^{\infty}\frac{e^{-ax}}{x}(x\cos sx)\,dx = \int\limits_{0}^{\infty}e^{-ax}\cos sx\,dx = \frac{a}{a^{2}+s^{2}} \end{equation*}
Integrating w.r.t. ’s’, we get -
\begin{equation*} F_{s}(s)= \int\limits_{0}^{\infty}\frac{a}{a^{2}+s^{2}}\,ds = \tan^{-1}\frac{s}{a}+c. \end{equation*}