The given equation is
\begin{equation}
\frac{\partial^{2}y(x,t)}{\partial x^{2}}=\frac{1}{v^{2}}\frac{\partial^{2}y(x,t)}{\partial t^{2}}\tag{6.2.12}
\end{equation}
and
\begin{equation}
\mathscr{F}\{y(x,t)\} = Y(s,t) = \int\limits_{-\infty}^{\infty}y(x,t) e^{-isx}\,dx\tag{6.2.13}
\end{equation}
\begin{equation*}
\mathscr{F}\{\frac{\partial^{2}y}{\partial x^{2}}\} = \frac{1}{v^{2}}\mathscr{F}\{\frac{\partial^{2}y}{\partial t^{2}}\}
\end{equation*}
or,
\begin{equation*}
(is)^{2}\mathscr{F}\{y(x,t)\} = \frac{1}{v^{2}}\frac{\partial^{2}}{\partial t^{2}}Y(s,t)
\end{equation*}
or,
\begin{equation*}
-s^{2}Y(s,t) = \frac{1}{v^{2}}\frac{\partial^{2}}{\partial t^{2}}Y(s,t)
\end{equation*}
or,
\begin{equation}
\frac{\partial^{2}Y}{\partial t^{2}}+v^{2}s^{2}Y =0\tag{6.2.14}
\end{equation}
This is a second order differential equation. whose solution is given as
\begin{equation}
Y(s,t) = C_{1}e^{+ivst}+C_{2}e^{-ivst}\tag{6.2.15}
\end{equation}
Imposing the initial condition in equation
(6.2.13)
\begin{equation}
Y(s,0) = \int\limits_{-\infty}^{\infty}y(x,0) e^{-isx}\,dx = \int\limits_{-\infty}^{\infty}f(x) e^{-isx}\,dx=F(s)\tag{6.2.16}
\end{equation}
\begin{equation}
Y(s,0) = C_{1}+C_{2}\tag{6.2.17}
\end{equation}
\begin{equation}
F(s) = C_{1}+C_{2}\tag{6.2.18}
\end{equation}
\begin{equation*}
Y'(s,t) = \int\limits_{-\infty}^{\infty}\left(\frac{\partial y}{\partial t}\right)e^{-isx}\,dx = ivsC_{1}e^{ivst} -ivsC_{2}e^{-ivst}
\end{equation*}
or,
\begin{equation*}
Y'(s,0) = \int\limits_{-\infty}^{\infty}\left(\frac{\partial y}{\partial t}\right)_{t=0}e^{-isx}\,dx = 0= ivs C_{1} -ivs C_{2}
\end{equation*}
\begin{equation}
\therefore \quad C_{1} = C_{2} \tag{6.2.19}
\end{equation}
Hence,
\begin{equation}
Y(s,t) = \frac{F(s)}{2}\left[e^{+ivst}+e^{-ivst}\right]\tag{6.2.20}
\end{equation}
\begin{equation*}
\mathscr{F}^{-1}\{Y(s,t)\}=y(x,t) = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}Y(s,t)e^{isx\,ds}
\end{equation*}
\begin{equation*}
= \frac{1}{4\pi}\int\limits_{-\infty}^{\infty}F(s)\left[e^{ivst}+e^{-ivst}\right]\,ds
\end{equation*}
\begin{equation*}
=\frac{1}{4\pi}\int\limits_{-\infty}^{\infty}\{f(x')e^{-isx}\,dx'\}\{\left[e^{+ivst}+ e^{-ivst}\right]e^{isx}\}\,ds
\end{equation*}
\begin{equation*}
=\frac{1}{4\pi}\int\limits_{-\infty}^{\infty}\{f(x')\,dx'\}\{\int\limits_{-\infty}^{\infty}\left[e^{is(x-x' +vt)}+ e^{is(x-x'-vt)}\right]\,ds\}
\end{equation*}
\begin{equation*}
=\frac{1}{2}\int\limits_{-\infty}^{\infty}\{f(x')\,dx'\}\{\delta(x+vt-x') + \delta(x-vt-x')\}
\end{equation*}
\begin{equation}
\mathscr{F}^{-1}\{Y(s,t)\}=y(x,t) = \frac{1}{2}\left[f(x+vt) +f(x-vt)\right] \tag{6.2.21}
\end{equation}
This is the general solution of wave equation. [from Dirac Delta function]
\begin{equation*}
\delta (x) =\frac{1}{2\pi} \int\limits_{-\infty}^{\infty}e^{isx}\,ds
\end{equation*}
and
\begin{equation*}
\int\limits_{-\infty}^{\infty}f(x) \delta (a-x)\,dx =f(a)].
\end{equation*}