Skip to main content

Subsection 5.5.2 Fourier Integral

Fourier series of a periodic function \(f(x)\) in the interval [-l,l] is given by
\begin{equation} f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos \left(\frac{n\pi x}{l}\right) + b_{n}\sin \left(\frac{n\pi x}{l}\right)\right] \tag{5.5.4} \end{equation}
where,
\begin{equation*} a_{0}=\frac{1}{l}\int\limits_{-l}^{l}f(t) \,dt, \end{equation*}
\begin{equation*} a_{n} = \frac{1}{l}\int\limits_{-l}^{l}f(t) \cos \left(\frac{n\pi t}{l}\right)\,dt, \end{equation*}
and
\begin{equation*} b_{n} = \frac{1}{l}\int\limits_{-l}^{l}f(t) \sin \left(\frac{n\pi t}{l}\right)\,dt. \end{equation*}
Substituting these values in equation (5.5.4), we get -
\begin{equation*} f(x) = \frac{1}{2l}\int\limits_{-l}^{l}f(t) \,dt \end{equation*}
\begin{equation*} + \frac{1}{l}\sum\limits_{n=1}^{\infty}\left[\int\limits_{-l}^{l}f(t)\left\{\cos \left(\frac{n\pi x}{l}\right) \cos \left(\frac{n\pi t}{l}\right)\right. \end{equation*}
\begin{equation*} \left.+ \sin \left(\frac{n\pi x}{l}\right)\sin \left(\frac{n\pi t}{l}\right)\right\}\,dt \right] \end{equation*}
or,
\begin{equation} f(x) = \frac{1}{2l}\int\limits_{-l}^{l}f(t) \,dt+ \frac{1}{l}\sum\limits_{n=1}^{\infty}f(t) \cos \left[\frac{n\pi}{l}(x-t)\right]\,dt\tag{5.5.5} \end{equation}
If we set \(u=\frac{n\pi}{l} \) so that \(\bigtriangleup u= \frac{\bigtriangleup n\pi}{l}, \) where \(\bigtriangleup n = 1 \) and \(\frac{1}{l}=\frac{\bigtriangleup u} {\pi}.\) Hence, equation (5.5.5) becomes
\begin{equation*} f(x) = \frac{1}{2l}\int\limits_{-l}^{l}f(t) \,dt+ \frac{1}{\pi}\sum\limits_{u=\pi/l}^{\infty}\bigtriangleup u \int\limits_{-l}^{l}f(t) \cos \left[u(x-t)\right]\,dt \end{equation*}
or,
\begin{equation} f(x) = \frac{1}{\pi}\int\limits_{0}^{\infty}\, du \int\limits_{-\infty}^{\infty}[u(x-t)]\,dt \tag{5.5.6} \end{equation}
Since
\begin{equation*} \frac{1}{2l}\int\limits_{-l}^{l}f(t) \,dt \rightarrow 0, \end{equation*}
and
\begin{equation*} \sum\limits_{u=\pi/l}^{\infty}\bigtriangleup u \rightarrow \int\limits_{0}^{\infty} \,du \end{equation*}
[as \(l\rightarrow \infty\)]. Equation (5.5.6) is called the Fourier integral formula.