Skip to main content

Subsection 5.5.1 Complex Form of Fourier Series

The complex form of Fourier series is obtained by expressing \(\cos nx\) and \(\sin nx\) in the exponential form, i.e.,
\begin{equation*} f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos nx + b_{n}\sin nx\right] \end{equation*}
\begin{equation*} =\frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}a_{n}\left[\frac{e^{inx}+e^{-inx}}{2}\right] + \sum\limits_{n=1}^{\infty}b_{n}\left[\frac{e^{inx}-e^{-inx}}{2i}\right] \end{equation*}
\begin{equation*} =\frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[\frac{a_{n}}{2}-\frac{ib_{n}}{2}\right]e^{inx}+\sum\limits_{n=1}^{\infty}\left[\frac{a_{n}}{2}+\frac{ib_{n}}{2}\right]e^{-inx} \end{equation*}
\begin{equation*} =c_{0}+\sum\limits_{n=1}^{\infty}c_{n}e^{inx}+\sum\limits_{n=1}^{\infty}c_{-n}e^{-inx} \end{equation*}
\begin{equation} \therefore \quad f(x) = \sum\limits_{n=-\infty}^{\infty}c_{n}e^{inx};\tag{5.5.3} \end{equation}
where,
\begin{equation*} \begin{cases} c_{0} = \frac{a_{0}}{2}\\ c_{n} = \frac{1}{2}(a_{n}-ib_{n})\\ c_{-n} = \frac{1}{2}(a_{n}+ib_{n}) \end{cases} \end{equation*}
Equation (5.5.3) is a complex form of Fourier series. On multiplying both sides of equation (5.5.3) by \(e^{-imx}\) and integrating w.r.t. ’x’, we get -
\begin{equation*} \int\limits_{c}^{c+2\pi}f(x)e^{-imx} \,dx = \sum\limits_{n=-\infty}^{\infty}c_{n}\int\limits_{c}^{c+2\pi}e^{i(n-mx)} \,dx \end{equation*}
\begin{equation*} = \sum\limits_{n=-\infty}^{\infty}c_{n}2\pi \delta_{mn}=2\pi c_{m} \end{equation*}
\begin{equation*} \therefore c_{n} =\frac{1}{2\pi}\int\limits_{c}^{c+2\pi}f(x)e^{-inx} \,dx. \end{equation*}
The function \(f(x)\) is being defined in the interval \([c, c+2\pi]\text{.}\) Hence,
\begin{equation*} c_{0}=\frac{1}{2\pi}\int\limits_{c}^{c+2\pi}f(x) \,dx = \frac{a_{0}}{2}. \end{equation*}