Skip to main content

Subsection 6.3.4 The Change of Scale Property

If \(\mathscr{L}[f(t)] =F(s),\) then
\begin{equation*} \mathscr{L}[f(at)] =\frac{1}{a}F\left(\frac{s}{a}\right) \end{equation*}

Proof.

We have,
\begin{equation*} \mathscr{L}[f(t)] =\int\limits_{0}^{\infty}e^{-st}f(t)\,dt \end{equation*}
or,
\begin{equation*} \mathscr{L}[f(at)] = \int\limits_{0}^{\infty}e^{-st}f(at)\,dt \end{equation*}
put \(at=u\) so that \(\,dt=\frac{1}{a}\,du\text{.}\)
\begin{equation*} \therefore \quad \mathscr{L}[f(at)]=\int\limits_{0}^{\infty}e^{-su/a}f(u)\,du \end{equation*}
where
\begin{equation*} p=s/a = \frac{1}{a}F(p) = \frac{1}{a}F(s/a)\text{.} \end{equation*}