Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\T}{\mathcal T}
\newcommand\comb[2]{^{#1}C{_{#2}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection 6.1.5 Some important Integrals:
\begin{equation*}
\int\limits_{0}^{\infty}\frac{\sin ax}{x}\,dx = \frac{\pi}{2}, \quad a \gt 0
\end{equation*}
\begin{equation*}
\int\limits_{0}^{\infty}e^{-ax} \sin bx \,dx = \frac{b}{a^{2}+b^{2}}
\end{equation*}
\begin{equation*}
\int\limits_{0}^{\infty}e^{-ax} \cos bx \,dx = \frac{a}{a^{2}+b^{2}}
\end{equation*}
\begin{equation*}
\int\limits_{0}^{\infty}e^{-x^{2}}\,dx = \frac{\sqrt{\pi}}{2}
\end{equation*}
\begin{equation*}
\int\limits_{-\infty}^{\infty}e^{-x^{2}}\,dx = 1
\end{equation*}
\begin{equation*}
\Gamma_{n}=a^{n}\int\limits_{0}^{\infty}e^{-ax}x^{n-1}\,dx, \quad \text{the Gamma function.}
\end{equation*}