Example 7.4.1.
Find the temperature distribution in the bar if bar and its ends are perfactly insulated, i.e.,
\begin{equation*}
\left.\frac{\partial u}{\partial x}\right\vert_{(0,t)} =0= \left.\frac{\partial u}{\partial x}\right\vert_{(\lambda,t)}
\end{equation*}
and initial temperature is \(u(x,0)=f(x)\text{.}\)
Solution.
Let the heat eqn. is
\begin{equation}
\frac{\partial u}{\partial t} =h^{2}\frac{\partial^{2}u}{\partial x^{2}} \tag{7.4.1}
\end{equation}
and
\begin{equation}
u(x,t)=X(x)T(t) \tag{7.4.2}
\end{equation}
be the solution of eqn. (7.4.1). Then by making substitution of eqn. (7.4.2) into eqn. (7.4.1), we get the solution as
\begin{equation}
u(x,t) = (A\cos\lambda x+B\sin\lambda x)Ce^{-\lambda^{2}h^{2}t} \tag{7.4.3}
\end{equation}
or,
\begin{equation}
\frac{\partial u}{\partial x}=-A\lambda \sin\lambda x+B\lambda\cos\lambda x)Ce^{-\lambda^{2}h^{2}t} \tag{7.4.4}
\end{equation}
\begin{equation*}
0=B\lambda Ce^{-\lambda^{2}h^{2}t} \Rightarrow B=0.
\end{equation*}
Therefore, eqn. (7.4.3) reduces to
\begin{equation}
u(x,t) = (A\cos\lambda x)Ce^{-\lambda^{2}h^{2}t} \tag{7.4.5}
\end{equation}
and
\begin{equation}
\frac{\partial u}{\partial x} =-A\lambda \sin\lambda x Ce^{-\lambda^{2}h^{2}t} \tag{7.4.6}
\end{equation}
putting
\begin{equation*}
\frac{\partial u}{\partial x}= 0
\end{equation*}
at \(x=\lambda \) in eqn. (7.4.6), we have -
\begin{equation*}
0=-AC\lambda\sin\lambda\lambda e^{-\lambda^{2}h^{2}t} \Rightarrow \sin\lambda\lambda =0=\sin n\pi
\end{equation*}
or,
\begin{equation*}
\lambda\lambda =n\pi
\end{equation*}
or,
\begin{equation}
\lambda=\frac{n\pi}{\lambda} \quad \text{where} \quad n=1,2,3,\cdots \tag{7.4.7}
\end{equation}
on putting the value of \(\lambda\) in eqn. (7.4.5), we have -
\begin{equation}
u(x,t) = (AC\cos\frac{n\pi x}{\lambda})e^{-n^{2}\pi^{2}h^{2}t/\lambda^{2}} = \sum\limits_{n=1}^{\infty}b_{n}\cos\frac{n\pi x}{\lambda}e^{-n^{2}\pi^{2}h^{2}t/\lambda^{2}} \tag{7.4.8}
\end{equation}
\begin{equation}
u(x,0) =f(x) = \sum\limits_{n=1}^{\infty}b_{n}\cos\frac{n\pi x}{\lambda} \tag{7.4.9}
\end{equation}
and
\begin{equation}
b_{n}=\frac{2}{\lambda}\int\limits_{0}^{\lambda}f(x) \cos\frac{n\pi x}{\lambda}\,dx \tag{7.4.10}
\end{equation}