Skip to main content

Subsection 6.1.2 Fourier Transforms

The Fourier transform is a mathematical tool used to analyze functions and signals, particularly in the field of signal processing. It decomposes a function of time, \(f(t)\text{,}\) into its frequency components \(F(\omega)\text{.}\) The Fourier transform allows us to represent a function in terms of its constituent frequencies. It is useful in finding the solution of partial differential equation with boundary value conditions. The Fourier transform can also be used to transform functions from one spatial domain to another. In particular, the Fourier transform can convert a function from the spatial domain to the wavevector domain, which is analogous to the frequency domain. When considering functions in multiple dimensions, such as functions of space variables, the Fourier transform can be extended to perform spatial transformations. For instance, in one dimension, if we have a function \(f(x) \) defined in the spatial domain, its Fourier transform \(F(k) \) is given by:
\begin{equation*} \mathscr{F}\{f(x)\}=F(k) = \int\limits_{-\infty}^{\infty}f(x)e^{ikx}\,dx \end{equation*}
and inverse Fourier Transform is
\begin{equation*} f(x) = \mathscr{F}^{-1}\{f(k)\} = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}f(k)e^{-ikx}\,dk. \end{equation*}
The Fourier transform of a function in the spatial domain provides information about the spatial frequencies present in the function. It allows us to analyze the spatial components of a function, study diffraction patterns, analyze images, and perform various other spatial domain operations.

Subsubsection 6.1.2.1 Fourier Integral Theorem

If the function \(f(x)\) satisfies the Dritchlet conditions in every interval of \(-l \leq x \leq l\) and the integration
\begin{equation*} \int\limits_{-\infty}^{\infty}\mid f(x)\mid\,dk \end{equation*}
must be convergent i.e., the function is absolutely integrable in the interval of \(-\infty \lt x \lt \infty\text{,}\) then
\begin{equation*} f(x) = \frac{1}{2\pi}\int\limits_{p=-\infty}^{\infty}\int\limits_{t=-\infty}^{\infty}f(t)\cos p(t-x)\,dp \,dt. \end{equation*}
The integral on right hand side is then called Fourier integral of \(f(x)\text{.}\)

Proof.

Fourier series of a function \(f(x)\) in interval \((-c,c)\) is given by
\begin{equation} f(x) = \frac{a_{o}}{2}+\sum\limits_{n=1}^{\infty}a_{n}\cos \left(\frac{n\pi x}{c}\right)+b_{n}\sin \left(\frac{n\pi x}{c}\right)\tag{6.1.2} \end{equation}
\begin{equation*} = \frac{1}{2c}\int\limits_{-c}^{c}f(t)\,dt + \sum\limits_{n=1}^{\infty}\frac{1}{c}\int\limits_{-c}^{c}f(t)\cos \left(\frac{n\pi t}{c}\right)\cos \left(\frac{n\pi x}{c}\right)\,dt \end{equation*}
\begin{equation*} + \sum\limits_{n=1}^{\infty}\frac{1}{c}\int\limits_{-c}^{c}f(t)\sin \left(\frac{n\pi t}{c}\right)\sin \left(\frac{n\pi x}{c}\right)\,dt \end{equation*}
\begin{equation*} = \frac{1}{2c}\int\limits_{-c}^{c}f(t)\,dt+ \frac{1}{c}\int\limits_{-c}^{c}f(t)\left[\sum\limits_{n=1}^{\infty}\cos \frac{n\pi (t-x)}{c}\right]\,dt \end{equation*}
\begin{equation} =\frac{1}{2c}\int\limits_{-c}^{c}f(t)\left[1+2\sum\limits_{n=1}^{\infty}\cos \frac{n\pi (t-x)}{c}\right]\,dt\tag{6.1.3} \end{equation}
since cosine functions are even function, we have \(\cos (-\theta) = \cos \theta\text{.}\) Hence the expression
\begin{equation*} 1+2\sum\limits_{n=1}^{\infty}\cos \frac{n\pi (t-x)}{c} = 1+\sum\limits_{n=1}^{\infty}\left\{\cos \frac{n\pi (t-x)}{c}+\cos \frac{-n\pi (t-x)}{c}\right\} \end{equation*}
\begin{equation*} = 1+ \sum\limits_{n=-\infty}^{\infty}\left\{\cos \frac{n\pi (t-x)}{c}\right\} \end{equation*}
\begin{equation*} \therefore f(x) = \frac{1}{2c}\int\limits_{-c}^{c}f(t)\,dt + \frac{1}{2\pi}\int\limits_{-c}^{c}f(t)\left[\sum\limits_{n=-\infty}^{\infty}\left\{\frac{\pi}{c}\cos \frac{n\pi (t-x)}{c}\right\}\right]\,dt \end{equation*}
Now assume that \(c\) increases indefinitely and making use of definition of integral as a limit of sum, we can write -
\begin{equation*} \frac{n\pi}{c}=p \quad \text{and}\quad \frac{\pi}{c}=\frac{p}{n}= \,dp \end{equation*}
\begin{equation*} \therefore \quad \lim\limits_{c\to \infty}\left[\frac{\pi}{c} \sum\limits_{n=-\infty}^{\infty}\cos \frac{n\pi (t-x)}{c}\right] = \int\limits_{-\infty}^{\infty}\cos p(t-x)\,dp \end{equation*}
and
\begin{equation} f(x) = 0+ \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} f(t)\,dt\int\limits_{-\infty}^{\infty}\cos p(t-x)\,dp\tag{6.1.4} \end{equation}
here
\begin{equation*} \frac{1}{2c}\int\limits_{-c}^{c}f(t)\,dt = 0 \end{equation*}
at \(c\rightarrow \infty\) and making use of the fact
\begin{equation*} \int\limits_{-\infty}^{\infty} |f(x)|\,dx \quad \text{ is convergent. } \end{equation*}
\begin{equation} f(x) = \frac{1}{2\pi}\int\limits_{p=-\infty}^{\infty}\int\limits_{t=-\infty}^{\infty}f(t)\cos p(t-x)\,dp \,dt\tag{6.1.5} \end{equation}
which is known as Fourier integral.

Subsubsection 6.1.2.2 Different Forms of Fourier Integral.

Since,
\begin{equation*} \int\limits_{-\infty}^{\infty}\cos p(t-x)\,dp = 2\int\limits_{0}^{\infty}\cos p(t-x)\,dp \end{equation*}
therefore from equation (6.1.5), we have
\begin{equation} f(x) = \frac{1}{\pi}\int\limits_{0}^{\infty}\int\limits_{-\infty}^{\infty}f(t)\cos p(t-x)\,dp\,dt\tag{6.1.6} \end{equation}

Cosine Form.

Taking
\begin{equation*} \mathcal{A}(p) = \int\limits_{-\infty}^{\infty}f(t)\cos pt\,dt \end{equation*}
and
\begin{equation*} \mathcal{B}(p) = \int\limits_{-\infty}^{\infty}f(t)\sin pt\,dt \end{equation*}
we obtain,
\begin{equation} f(x) = \frac{1}{\pi}\int\limits_{0}^{\infty}\left[\mathcal{A}(p)\cos px + \mathcal{B}(p)\sin px\right]\,dp\tag{6.1.7} \end{equation}
Let \(f(t)\) be an even function of \(t\) so that \(f(t) =f(-t)\text{,}\) then \(f(t)\cos pt\) is even and \(f(t)\sin pt\) is odd function of \(t\text{.}\) Consequently,
\begin{equation*} \mathcal{A}(p) = 2\int\limits_{0}^{\infty}f(t)\cos pt\,dt \end{equation*}
and
\begin{equation*} \mathcal{B}(p) = 0. \end{equation*}
Putting these values in equation (6.1.7), we get -
\begin{equation*} f(x) = \frac{1}{\pi}\int\limits_{0}^{\infty}\left[\mathcal{A}(p)\cos px +0.\sin px\right]\,dp = \frac{2}{\pi}\int\limits_{0}^{\infty}\int\limits_{0}^{\infty}f(t)\cos pt\cos px\,dp\,dt \end{equation*}
which is the required form of Fourier Cosine Integral.

Sine Form.

Let \(f(t)\) be an odd function of \(t\) so that \(f(t) = -f(t)\text{,}\) then \(f(t)\cos pt\) is an odd and \(f(t)\sin pt\) is an even function of \(t\text{.}\) Consequently,
\begin{equation*} \mathcal{A}(p) = 0 \end{equation*}
and
\begin{equation*} \mathcal{B}(p) = 2\int\limits_{0}^{\infty}f(t)\sin pt\,dt. \end{equation*}
putting these values in equation (6.1.7), we get -
\begin{equation*} f(x) = \frac{2}{\pi}\int\limits_{0}^{\infty}\int\limits_{0}^{\infty}f(t)\sin pt\sin px\,dp\,dt \end{equation*}
which is the required form of Fourier Sine Integral.

Exponential Form.

\begin{equation*} f(x) = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}f(t)e^{-ipt}e^{ipx}\,dp\,dt \end{equation*}
Proof.
From Fourier integral formula
\begin{equation*} f(x) = \frac{1}{\pi}\int\limits_{p=0}^{\infty}\int\limits_{t=-\infty}^{\infty}f(t)\cos p(t-x)\,dp\,dt \end{equation*}
\begin{equation*} =\frac{1}{2\pi}\int\limits_{p=0}^{\infty}\int\limits_{t=-\infty}^{\infty}f(t)\left[e^{-ip(t-x)}+e^{ip(t-x)}\right]\,dp\,dt \end{equation*}
\begin{equation*} =\frac{1}{2\pi}\int\limits_{p=0}^{\infty}\int\limits_{t=-\infty}^{\infty}f(t) \left[e^{-ipt}.e^{ipx}+e^{ipt}e^{-ipx}\right]\,dp\,dt \end{equation*}
\begin{equation*} =\frac{1}{2\pi}\int\limits_{0}^{\infty}\int\limits_{-\infty}^{\infty}f(t)e^{-ipt}.e^{ipx}\,dp\,dt+\frac{1}{2\pi}\int\limits_{0}^{\infty}\int\limits_{-\infty}^{\infty}e^{ipt}e^{-ipx}\,(-dp)\,dt \end{equation*}
Putting \(p=-p'\) in the second integral, we get -
\begin{equation*} f(x) = \frac{1}{2\pi}\int\limits_{0}^{\infty}\int\limits_{-\infty}^{\infty}f(t)e^{-ipt}.e^{ipx}\,dp\,dt+\frac{1}{2\pi}\int\limits_{0}^{\infty}\int\limits_{-\infty}^{\infty}e^{-ip' t}e^{ip' x}\,(-dp')\,dt \end{equation*}
or,
\begin{equation*} f(x) = \frac{1}{2\pi}\int\limits_{0}^{\infty}\int\limits_{-\infty}^{\infty}f(t)e^{-ipt}.e^{ipx}\,dp\,dt+\frac{1}{2\pi}\int\limits_{-\infty}^{0}\int\limits_{-\infty}^{\infty}e^{-ipt}e^{ipx}\,dp\,dt \end{equation*}
(on dropping primes)
\begin{equation} f(x) = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}f(t)e^{-ipt}.e^{ipx}\,dp\,dt\tag{6.1.8} \end{equation}
Note: putting \(p=-p'\text{,}\) in the last integral, we get -
\begin{equation} f(x) = \frac{1}{2\pi}\int\limits_{\infty}^{-\infty}\int\limits_{-\infty}^{\infty}f(t)e^{ip' t}.e^{-ip' x}\,(-dp)\,dt\tag{6.1.9} \end{equation}
from equations (6.1.8) and (6.1.9), it is clear that the negative sign in the exponent \((-ipt)\) can be shifted to \((ipx)\) without effecting the value of integral. Thus equation (6.1.9) is an alternate form to equation (6.1.8). In the complex Fourier integral,
\begin{equation*} f(x) = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}e^{+ipx}\,dp \int\limits_{-\infty}^{\infty}f(t)e^{-ipt}\,dt; \end{equation*}
if we put
\begin{equation*} \int\limits_{-\infty}^{\infty}e^{-ipt}\,dt = F(p) \end{equation*}
then,
\begin{equation*} f(x) = \frac{1}{2\pi}\int\limits_{-\infty}^{\infty}e^{+ipx}F(p)\,dp \end{equation*}
where \(f(x)\) is called Inverse Fourier Transform of \(F(p)\) and \(F(p)\) is called Fourier Transform of \(f(x)\text{.}\)