Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\T}{\mathcal T}
\newcommand\comb[2]{^{#1}C{_{#2}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection 6.1.1 Properties of Delta functions
-
If \(f(x)\) is continuous in a certain interval which includes the origin, then
\begin{equation*}
\int\limits_{-\infty}^{\infty}f(x)\delta(x)\,dx = f(0)
\end{equation*}
\begin{equation*}
\int\limits_{-\infty}^{\infty}f(x)\delta(x-a)\,dx = f(a)
\end{equation*}
\begin{equation*}
\int\limits_{-\infty}^{\infty}f(x)\delta(a-x)\,dx = f(a)
\end{equation*}
\begin{equation*}
\delta(-x)=\delta(x)
\end{equation*}
\begin{equation*}
\delta(ax) = \frac{1}{a}\delta(x), \quad a \gt 0
\end{equation*}