Skip to main content

Subsection 6.1.1 Properties of Delta functions

  1. If \(f(x)\) is continuous in a certain interval which includes the origin, then
    1. \begin{equation*} \int\limits_{-\infty}^{\infty}f(x)\delta(x)\,dx = f(0) \end{equation*}
    2. \begin{equation*} \int\limits_{-\infty}^{\infty}f(x)\delta(x-a)\,dx = f(a) \end{equation*}
    3. \begin{equation*} \int\limits_{-\infty}^{\infty}f(x)\delta(a-x)\,dx = f(a) \end{equation*}
  2. \begin{equation*} \delta(-x)=\delta(x) \end{equation*}
  3. \begin{equation*} \delta(ax) = \frac{1}{a}\delta(x), \quad a \gt 0 \end{equation*}