Skip to main content

Section 3.3 ExamplesA

Example 3.3.1.

Show that a scalar is invariant under any coordinate transformation.
Solution.
We have the transformation equations for contravariant and covariant tensor as
\begin{equation*} \bar{A}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}}A^{j} \end{equation*}
and
\begin{equation*} \bar{A}_{i}=\frac{\partial x^{j}}{\partial \bar{x}^{i}}A_{j} \end{equation*}
now scalar is a tensor of rank zero, so set \(i=j=0\text{,}\) we get from above equations, \(A = \bar{A}\) i.e., scalar is invarient under any coordinate transformation.

Example 3.3.2.

show that in a cartensian coordinate system, the contravarient and covarient components of a vector are identical.
Solution.
Let \(A^{i}\) and \(A_{i}\) are the contravarient and covarient components of a vector respectively in a cartesian coordinates, then they are related by \(A_{i}=g_{ij}A^{j}=g_{ji}A^{j}\text{.}\) Here,
\begin{equation*} \left\{g_{ij} = \frac{\partial \bar{x}^{j}}{\partial x^{i}}\cdot \frac{\partial \bar{x}^{i}}{\partial x^{j}}\right. \end{equation*}
and in cartesian coordinate \(h_{1}= h_{2} = h_{3} =1\text{.}\) Therefore, \(g_{11} =g_{22} =g_{33}=1 \) in orthogonal system. For a cartesian system \(g_{ii}=1\) [if \(i=j\)] and \(g_{ij} =0\) [if \(i \neq j\)]. Hence, \(A_{i}=g_{ii}A^{i}\) and \(A_{i}=A^{i}\text{,}\) i. e., covarient component is similar to contravarient components.

Example 3.3.3.

Show that velocity and acceleration are contravarient vectors and that of the gradient of a scalar field is a covarient vector.
Solution.
  1. Let the transformation eqn. as
    \begin{equation} \,d\bar{x}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}}\,dx^{j} \tag{3.3.1} \end{equation}
    Dividing by \(\,dt\text{,}\) we get -
    \begin{equation} \frac{\,d\bar{x}^{i}}{\,dt}=\frac{\partial \bar{x}^{i}}{\partial x^{j}}\frac{dx^{j}}{\,dt} \tag{3.3.2} \end{equation}
    But,
    \begin{equation*} \frac{\,d\bar{x}^{i}}{\,dt} = \bar{v}^{i} \end{equation*}
    and
    \begin{equation*} \frac{\,dx^{j}}{\,dt} = \bar{v}^{j} \end{equation*}
    \begin{equation} \therefore \bar{v}^{i} = \frac{\,d\bar{x}^{i}}{\partial x^{j}}v^{j} \tag{3.3.3} \end{equation}
    Velocity \(v^{j}\) is a contravarient vector because (3.3.3) is a transformation rule for contravarient tensor. Again, differentiating (3.3.3), w. r. t. \('t'\text{,}\) we get -
    \begin{equation*} \frac{\,d\bar{v}^{i}}{\,dt} = \frac{\,d\bar{x}^{i}}{\partial x^{j}}\frac{\,dv^{j}}{\,dt} \end{equation*}
    \begin{equation} \therefore \bar{a}^{i} = \frac{\,d\bar{x}^{i}}{\partial x^{j}}a^{j} \tag{3.3.4} \end{equation}
    hence acceleration is also a contravarient vector.
    Note: The coordinates \(x^{j}\) in \(\frac{\,dx^{j}}{\,dt}\) are the coordinates of a particle in motion, while the coefficients \(\frac{\,d\bar{x}^{i}}{\partial x^{j}}\) only denotes a relation between two coordinate systems, which is independent of time.
  2. Let \(\phi = \phi(x^{j})\) be a scalar field. The functional form of scalar field is same under coordinate transformations, hence
    \begin{equation*} \phi(x^{j}) = \bar{\phi}(\bar{x}^{i}) = \phi(\bar{x}^{i}) \end{equation*}
    now under frame rotation
    \begin{equation*} \frac{\partial\phi}{\partial x^{j}} = \frac{\partial\phi}{\partial \bar{x}^{i}}\frac{\partial\bar{x}^{i}}{\partial x^{j}} \end{equation*}
    \begin{equation*} \frac{\partial\phi}{\partial x^{j}} = \frac{\partial\phi}{\partial \bar{x}^{i}}\frac{\partial\bar{x}^{i}}{\partial x^{j}} \end{equation*}
    or,
    \begin{equation} \quad A_{j} = \frac{\partial\bar{x}^{i}}{\partial x^{j}}\bar{A_{i}} \tag{3.3.5} \end{equation}
    i.e., the (3.3.5) shows the transformation rule for covarient tensor. If we suppose, \(A^{j} = \frac{\partial\phi}{\partial x^{j}}\) and \(\bar{A^{i}} = \frac{\partial\phi}{\partial \bar{x}^{i}}\) then \(A^{j}=\frac{\partial\bar{x^{i}}}{\partial x^{j}}\bar{A^{i}}\) which is not the transformation rule. Hence the gradient of a scalar field is not a contravarient vector.

Example 3.3.4.

Show that the contraction of the outer product of the tensors \(A^{p}\) and \(B_{q}\) is an invariant.
Solution.
Since \(A^{p}\) and \(B_{q}\) are tensors, we have,
\begin{equation*} \bar{A}^{j} = \frac{\partial\bar{x}^{j}}{\partial x^{p}}A^{p} \end{equation*}
and
\begin{equation*} \bar{B}_{k} = \frac{\partial x^{q}}{\partial \bar{x}^{k}}B_{q} \end{equation*}
therefore, the outer product is
\begin{equation*} \bar{A}^{j}\bar{B}_{k} = \frac{\partial\bar{x}^{j}}{\partial x^{p}}\frac{\partial x^{q}}{\partial \bar{x}^{k}}A^{p}B_{q} \end{equation*}
by contraction, put \(j=k\text{,}\) we have
\begin{equation*} \bar{A}^{j}\bar{B}_{j} = \frac{\partial\bar{x}^{j}}{\partial x^{p}}\frac{\partial x^{q}}{\partial \bar{x}^{j}}A^{p}B_{q} = \frac{\partial x^{q}}{\partial x^{p}}A^{p}B_{q} = \delta^{q}_{p}A^{p}B_{q} = A^{p}B_{q} = \text{invarient}. \end{equation*}

Example 3.3.5.

If \(A^{ij}\) is symmetric tensor in a reference system then it is symmetric in all other reference system.
Solution.
Let \(A^{ij}\) is a components of symmetric tensor then \(A^{ij} = A^{ji}\text{.}\) If \(\bar{A}^{pq}\) be the components in barred system, then
\begin{equation*} \bar{A}^{pq}= \frac{\partial\bar{x}^{p}}{\partial x^{i}}\frac{\partial \bar{x}^{q}}{\partial \bar{x}^{j}}A^{ij} \end{equation*}
on interchanging the indices \(p\text{,}\) \(q\) and \(i\text{,}\) \(j\text{,}\) we have
\begin{equation*} \bar{A}^{qp}= \frac{\partial\bar{x}^{q}}{\partial x^{i}}\frac{\partial \bar{x}^{p}}{\partial x^{j}}A^{ji} \end{equation*}
\begin{equation*} \therefore \bar{A}^{qp} = \bar{A}^{pq} \quad \text{proved}. \end{equation*}

Example 3.3.6.

The symmetric or antisymmetric property may not be true for the interchange of contravariant and covariant index in all system, i.e., \(A^{p} _{q} \neq A^{q} _{p}\text{.}\)
Solution.
If \(A^{i} _{j}= A^{j} _{i}\text{,}\) then it is not necessary that \(\bar{A}^{q} _{p} = \bar{A}^{p} _{q}\text{.}\) Suppose \(A^{i} _{j}\) is a component of a mixed tensor in unbarred system such that \(A^{i} _{j}= A^{j} _{i}\text{.}\) Then in barred system, we have -
\begin{equation} \bar{A}^{p} _{q} = \frac{\partial\bar{x}^{p}}{\partial x^{i}} \frac{\partial x^{j}}{\partial \bar{x}^{q}}A^{i} _{j} \tag{3.3.6} \end{equation}
Interchange \(p{,}q\) and \(i{,}j\text{,}\) we get -
\begin{equation} \bar{A}^{q} _{p} = \frac{\partial\bar{x}^{q}}{\partial x^{j}} \frac{\partial x^{i}}{\partial \bar{x}^{p}}A^{j} _{i} = \frac{\partial\bar{x}^{q}}{\partial x^{j}}\frac{\partial x^{i}}{\partial \bar{x}^{p}}A^{i} _{j} \tag{3.3.7} \end{equation}
from eqns. (3.3.6) and (3.3.7),
\begin{equation*} \because \quad \frac{\partial\bar{x}^{q}}{\partial x^{j}} \neq \frac{\partial x^{j}}{\partial \bar{x}^{q}} \end{equation*}
\begin{equation*} \frac{\partial x^{i}}{\partial \bar{x}^{p}} \neq \frac{\partial\bar{x}^{p}}{\partial x^{i}} \end{equation*}
Hence,
\begin{equation*} \bar{A}^{p} _{q} \neq \bar{A}^{q} _{p}. \end{equation*}
Thus the symmetric propeties are not preserved in contravariant and covariant of different systems.

Example 3.3.7.

Show that \(\frac{\partial A_{p}}{\partial x^{q}}\) is not a tensor even though \(A_{p}\) is a covarient tensor of rank one.
Solution.
we have -
\begin{equation*} \bar{A_{j}} = \frac{\partial x^{p}}{\partial \bar{x}^{j}}A_{p} \end{equation*}
Differentiating w. r. t. \(\bar{x}^{k}\) we get -
\begin{equation*} \frac{\partial \bar{A_{j}}}{\bar{x}^{k}} = \frac{\partial x^{p}}{\partial \bar{x}^{j}}.\frac{\partial A_{p}}{\partial \bar{x}^{k}} + \frac{\partial^{2} x^{p}}{\partial \bar{x}^{k} \partial \bar{x}^{j}}A_{p} \end{equation*}
\begin{equation*} = \frac{\partial x^{p}}{\partial \bar{x}^{j}}.\frac{\partial A_{p}}{\partial x^{q}} \frac{\partial x_{q}}{\partial \bar{x}^{k}}+\frac{\partial^{2} x^{p}}{\partial \bar{x}^{k} \partial \bar{x}^{j}}A_{p} \end{equation*}
\begin{equation*} = \frac{\partial x^{p}}{\partial \bar{x}^{j}}.\frac{\partial x_{q}}{\partial \bar{x}^{k}} \frac{\partial A_{p}}{\partial x^{q}}+\frac{\partial^{2} x^{p}}{\partial \bar{x}^{k} \partial \bar{x}^{j}}A_{p} \end{equation*}
because of the presence of second term on the right \(\frac{\partial A_{p}}{\partial x^{q}}\) does not transform like a tensor.

Example 3.3.8.

Prove that the contraction of the tensor \(A^{p} _{q}\) is a scalar or invarient.
Solution.
We have
\begin{equation*} \bar{A}^{j} _{k} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{q}}{\partial \bar{x}^{k}} A^{p} _{q} \end{equation*}
put \(j=k\text{,}\) then
\begin{equation*} \bar{A}^{j} _{j} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{q}}{\partial \bar{x}^{j}} A^{p} _{q} = \delta_{p}^{q}A^{p} _{q} = A^{p} _{p}. \end{equation*}
Thus \(\bar{A}^{j} _{j} = A^{p} _{p}\) which means \(A^{p} _{p}\) must be an invarient.

Example 3.3.9.

Show that the inner product of any \(2^{nd}\) rank tensors is a tensor of rank two.
Solution.
Let us consider \(A^{p}_{r}\) and \(B^{qs}\) are any tensors of rank two, then -
\begin{equation*} \bar{A}^{j} _{k} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{r}}{\partial \bar{x}^{k}} A^{p} _{r} \end{equation*}
and
\begin{equation*} \bar{B}^{lm}= \frac{\partial\bar{x}^{l}}{\partial x^{q}}. \frac{\partial\bar{x}^{m}}{\partial x^{s}} B^{qs} \end{equation*}
multiplying them, we get -
\begin{equation*} \bar{A}^{j} _{k}\bar{B}^{lm} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{r}}{\partial \bar{x}^{k}}\frac{\partial\bar{x}^{l}}{\partial x^{q}}. \frac{\partial\bar{x}^{m}}{\partial x^{s}} A^{p} _{r}B^{qs} \end{equation*}
set \(k=l,\) we get -
\begin{equation*} \bar{A}^{j} _{k}\bar{B}^{km} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{r}}{\partial \bar{x}^{k}}\frac{\partial\bar{x}^{k}}{\partial x^{q}}. \frac{\partial\bar{x}^{m}}{\partial x^{s}} A^{p} _{r}B^{qs} \end{equation*}
\begin{equation*} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \delta_{q}^{r} \frac{\partial\bar{x}^{m}}{\partial x^{s}} A^{p} _{r}B^{qs} \end{equation*}
\begin{equation*} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial\bar{x}^{m}}{\partial x^{s}} A^{p} _{q}B^{qs} \end{equation*}
\begin{equation*} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial\bar{x}^{m}}{\partial x^{s}} C^{ps} \end{equation*}
which is a second rank tensor.

Example 3.3.10.

Show that the inner product of a \(2^{nd}\) tensor and a \(3^{rd}\) rank tensor is a tensor of rank three.
Solution.
Let us consider \(A^{p}_{r}\) and \(B^{qs}_{t}\) are any tensors of rank two and three, respectively then -
\begin{equation*} \bar{A}^{j} _{k} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{r}}{\partial \bar{x}^{k}} A^{p} _{r} \end{equation*}
and
\begin{equation*} \bar{B}^{lm} _{n}= \frac{\partial\bar{x}^{l}}{\partial x^{q}}. \frac{\partial\bar{x}^{m}}{\partial x^{s}}. \frac{\partial x^{t}}{\partial \bar{x}^{n}}B^{qs} _{t} \end{equation*}
multiplying, we get -
\begin{equation*} \bar{A}^{j} _{k}\bar{B}^{lm} _{n} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{r}}{\partial \bar{x}^{k}}\frac{\partial\bar{x}^{l}}{\partial x^{q}}. \frac{\partial\bar{x}^{m}}{\partial x^{s}}. \frac{\partial x^{t}}{\partial \bar{x}^{n}}A^{p} _{r}B^{qs} _{t} \end{equation*}
put \(j=n\text{,}\)
\begin{equation*} \bar{A}^{j} _{k}\bar{B}^{lm} _{j} = \frac{\partial\bar{x}^{j}}{\partial x^{p}} \frac{\partial x^{r}}{\partial \bar{x}^{k}}\frac{\partial\bar{x}^{l}}{\partial x^{q}}. \frac{\partial\bar{x}^{m}}{\partial x^{s}}. \frac{\partial x^{t}}{\partial \bar{x}^{j}}A^{p} _{r}B^{qs} _{t} \end{equation*}
\begin{equation*} = \delta_{p}^{t} \frac{\partial x^{r}}{\partial \bar{x}^{k}}\frac{\partial\bar{x}^{l}}{\partial x^{q}} \frac{\partial\bar{x}^{m}}{\partial x^{s}} A^{p} _{r}B^{qs} _{t} \end{equation*}
\begin{equation*} =\frac{\partial x^{r}}{\partial \bar{x}^{k}}\frac{\partial\bar{x}^{l}}{\partial x^{q}}. \frac{\partial\bar{x}^{m}}{\partial x^{s}}A^{p} _{r}B^{qs} _{p} = \frac{\partial x^{r}}{\partial \bar{x}^{k}}\frac{\partial\bar{x}^{l}}{\partial x^{q}} \frac{\partial\bar{x}^{m}}{\partial x^{s}}C^{qs} _{r} \end{equation*}
i.e., \(A^{p} _{r}B^{qs} _{t}\) is a tensor of rank three.

Example 3.3.11.

If a tensor \(A^{pqr} _{st}\) is a symmetric w.r.t. indices \(p\) and \(q\) in one coordinate system then show that it remains symmetric w.r.t. \(p\) and \(q\) in any other coordinate systems.
Solution.
Since only indices \(p\) and \(q\) are involved, we shall prove that the results for \(B^{pq}\text{.}\) If \(B^{pq}\) is symmetric then \(B^{pq}= B^{qp}\) and
\begin{equation*} \bar{B}^{jk} =\frac{\partial\bar{x}^{j}}{\partial x^{p}}\frac{\partial\bar{x}^{k}}{\partial x^{q}}B^{pq} = \frac{\partial\bar{x}^{k}}{\partial x^{q}}\frac{\partial\bar{x}^{j}}{\partial x^{p}}B^{qp} = \bar{B}^{kj} \end{equation*}
hence \(B_{qp}\) remains symmetric in the \(\bar{x}^{i}\) coordinate system. If \(B^{pq}\) is skew - symmetric, then \(B^{pq} = - B^{qp}\) and
\begin{equation*} \bar{B}^{jk} =\frac{\partial\bar{x}^{j}}{\partial x^{p}}\frac{\partial\bar{x}^{k}}{\partial x^{q}}B^{pq} =- \frac{\partial\bar{x}^{k}}{\partial x^{q}}\frac{\partial\bar{x}^{j}}{\partial x^{p}}B^{qp} = -\bar{B}^{kj} \end{equation*}
hence \(B_{pq}\) remains skew - symmetric in \(\bar{x}^{i}\) system.

Example 3.3.12.

Prove that \(\delta^{p}_{q}\) is a mixed tensor of rank two.
Solution.
If \(\delta^{p}_{q}\) is a mixed tensor it must transform as
\begin{equation*} \bar{\delta}^{j}_{k} = \frac{\partial\bar{x}^{j}}{\partial x^{p}}\frac{\partial x^{q}}{\partial \bar{x}^{k}}\delta^{p}_{q} = \frac{\partial\bar{x}^{j}}{\partial x^{p}}\frac{\partial x^{p}}{\partial \bar{x}^{k}} = \frac{\partial\bar{x}^{j}}{\partial \bar{x}^{k}} = \delta^{j}_{k}. \end{equation*}
\begin{equation*} \because \quad \bar{\delta}^{j}_{k} = \delta^{j}_{k} = \begin{cases} 1,& \text{if } j = k \\ 0, & \text{if } j \neq k \end{cases} \end{equation*}
Therefore, \(\delta^{p}_{q}\) is a mixed tensor of rank two.

Example 3.3.13.

Prove \(\delta_{ii} = 3\text{.}\)
Solution.
\begin{equation*} \delta_{ii} = \delta_{11} +\delta_{22}+\delta_{33}= 3$. \end{equation*}

Example 3.3.14.

Prove \(\delta_{ik}\omega_{ik} = \omega_{ii}\text{.}\)
Solution.
In \(\delta_{ik}\omega_{ik}\) both \(i\) and \(k\) are dummy and they are to be summed over from 1 to 3. As \(\delta_{ik} = 1\) only if \(i = k\) and \(\delta_{ik} = 0\) for \(i \neq k\text{.}\) So only terms for \(i=k = 1,2,3\) will contribute and thus
\begin{equation*} \delta_{ik}\omega_{ik} = \omega_{kk}= \omega_{11}+\omega_{22}+\omega_{33}=\omega_{ii}. \end{equation*}