Skip to main content

Exercises 4.13 Exercise

1.

Solve the following differential equations.
  1. \begin{equation*} \frac{d^{2}y}{dx^{2}}+y= \mathrm{cosec}x \end{equation*}
    Answer.
    \begin{equation*} C_{1}\cos x+C_{2}\sin x -x\cos x+\sin x\cdot \log\sin x. \end{equation*}
  2. \begin{equation*} \frac{d^{2}y}{dx^{2}}+4y=4\tan 2x, y(0)=0,y(\frac{\pi}{6})=0. \end{equation*}
    Answer.
    \begin{equation*} \frac{1}{\sqrt{3}}\log(2+\sqrt{3})\sin 2x-\cos 2x\log(sec 2x+\tan 2x). \end{equation*}
  3. \begin{equation*} \frac{d^{2}y}{dx^{2}}-2\frac{dy}{dx}+2y=e^{x}\tan x. \end{equation*}
    Answer.
    \begin{equation*} e^{x}(C_{1}\cos x+C_{2}\sin x)-e^{x}\cos x\sin x(\sec x+\tan x). \end{equation*}

2.

Solve
\begin{equation*} x^{2}y''-2x(1+x)y' +2(1+x)y =x^{3}. \end{equation*}
Answer.
\begin{equation*} y=(C_{1}x+C_{2}xe^{x})-(\frac{1}{2}x^{2}+\frac{1}{4}x). \end{equation*}

3.

Solve
\begin{equation*} (1-x)y''+xy' -y =(1-x^{2}). \end{equation*}
Answer.
\begin{equation*} y=(C_{1}x+C_{2}e^{x})+(1+x+x^{2}). \end{equation*}

4.

Solve
\begin{equation*} y''+(1-\cot x)y' -y\cot x =\sin^{2}x. \end{equation*}
Answer.
\begin{equation*} y=\{C_{1}(\sin x-\cos x)+C_{2}e^{-x}\}-\frac{1}{10}(\sin 2x)-2\cos 2x). \end{equation*}

5.

Apply power series method to find the solution of the following linear equations.
  1. \begin{equation*} y''-(x+1)y'+x^{2}y =x. \end{equation*}
    With the initial conditions \(y(0) =1, y'(0)=1\text{.}\)
    Answer.
    \begin{equation*} y=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{8}+\cdots \end{equation*}
  2. \begin{equation*} y''+x^{2}y =0. \end{equation*}
    Answer.
    \begin{equation*} y=a_{o}\left[1-\frac{x^{4}}{12}+\frac{x^{8}}{12\cdot 7\cdot 8}-\frac{x^{12}}{12\cdot 8\cdot 7 \cdot 11 \cdot 12} +\cdots\right] \end{equation*}
    \begin{equation*} +a_{1}\left[x-\frac{x^{2}}{20}+\frac{x^{9}}{20\cdot 8\cdot 9}-\cdots\right]. \end{equation*}
  3. \begin{equation*} xy''+2y'+xy =0. \end{equation*}
    Answer.
    \begin{equation*} y=c_{1}\left[1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right]+c_{2}x^{-1}\left[1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right] \end{equation*}
  4. \begin{equation*} xy''+(x-1)y'-y=0. \end{equation*}
    Answer.
    \begin{equation*} y=A\left[1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots\right] \end{equation*}
    \begin{equation*} +Bx^{2}\left[1-\frac{2x}{3!}+\frac{2x^{2}}{4!}-\frac{2x^{3}}{5!}+\cdots\right]. \end{equation*}
  5. \begin{equation*} 2x(1-x)y''+(1-x)y'+3y=0. \end{equation*}
    Answer.
    \begin{equation*} y=a_{o}\sqrt{x}(1-x)+a_{1}\left[1-3x+\frac{3x^{2}}{1\cdot 3}+\frac{3x^{3}}{3\cdot 5}+\cdots\right]. \end{equation*}

6.

Express in terms of Legendre’s Polynomials.
  1. \begin{equation*} x^{4}+x^{3}+x^{2}+x+1 \end{equation*}
    Answer.
    \begin{equation*} \frac{8}{35}P_{4}(x)+ \frac{2}{5}P_{3}(x)+\frac{26}{21}P_{2}(x)+\frac{3}{5}P_{1}(x)+\frac{23}{15}P_{0}(x) \end{equation*}
  2. \begin{equation*} 1+2x-3x^{2}+4x^{3}. \end{equation*}
    Answer.
    \begin{equation*} \frac{8}{5}P_{3}(x)-2P_{2}(x)+\frac{22}{5}P_{1}(x)+\frac{3}{5}P_{1}(x). \end{equation*}

7.

From the values of Legendre’s Polynomials, prove that
  1. \begin{equation*} x^{2}=\frac{1}{3}[2 P_{2}(x)+P_{0}(x)] \end{equation*}
  2. \begin{equation*} x^{5}=\frac{1}{63}[8 P_{5}(x)+28 P_{3}(x)+27P_{1}(x)]. \end{equation*}

8.

Prove that
\begin{equation*} \int\limits_{-1}^{+1}P_{n}(x)\,dx =0, \quad n \neq 0. \end{equation*}

9.

Prove that
\begin{equation*} \int\limits_{-1}^{+1} x P_{n}(x)P_{n-1}(x)\,dx =\frac{2n}{4n^{2}-1}. \end{equation*}

10.

Show that
\begin{equation*} x^{2r}=\sum \limits_{n=0}^{r}\frac{2^{2n}(4n+1)2r!(n-r)!}{(2r+2n+1)!(r-n)!}P_{2n}(x). \end{equation*}

11.

Prove that
\begin{equation*} P_{n}(0) =0 \end{equation*}
for \(n\) odd.

12.

Find the value of \(J_{\pm\frac{5}{2}}(x)\text{.}\)
Answer.
\begin{equation*} J_{+\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{3-x^{2}}{x^{2}}\sin x-\frac{3}{x}\cos x\right] \end{equation*}
and
\begin{equation*} J_{-\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{3}{x}\sin x-\frac{3-x^{2}}{x^{2}}\cos x\right] \end{equation*}

13.

Prove that
\begin{equation*} J_{4}(x)=\left(\frac{48}{x^{3}}-\frac{8}{x}\right)J_{1}(x)+\left(1-\frac{24}{x^{2}}\right)J_{o}(x) \end{equation*}

14.

Prove that
\begin{equation*} J_{1}(x)=\frac{x}{2}-\frac{x^{3}}{2^{3}1!2!}+\frac{x^{5}}{2^{5}2!3!}-\frac{x^{7}}{2^{7}3!4!}+\cdots \end{equation*}

15.

Show that
\begin{equation*} J''_{o}(x)=\frac{1}{2}\left[J_{2}(x)-J_{o}(x)\right] \end{equation*}

16.

Prove that
\begin{equation*} \frac{\,d}{\,dx}\left[xJ_{1}(x)\right]=xJ_{o}(x) \end{equation*}

17.

Prove that
\begin{equation*} 4J''_{o}(x)+3J_{o}(x)+J_{3}(x)=0 \end{equation*}

18.

Prove that
\begin{equation*} J^{2}_{o}+2J^{2}_{1}+2J^{2}_{2}+\cdots=1 \end{equation*}

19.

Prove that
\begin{equation*} \int\limits_{-\infty}^{\infty}x^{2}e^{-x^{2}}H_{m}(x)H_{n}(x)\,dx =\sqrt{\pi}2^{n}n!(n+1)/2\cdot\delta_{m,n}. \end{equation*}

20.

Show that
\begin{equation*} \int\limits_{-\infty}^{\infty}xH_{n}(x)e^{-x^{2}}\,dx =\begin{cases} 0, \\ 2\pi. \end{cases} \end{equation*}

21.

Show that
\begin{equation*} x^{2r}=\frac{(2r)!}{2^{2r}}\sum\limits_{n=0}^{r}\frac{H_{2n}(x)}{(2r)!(r-n)!}. \end{equation*}

22.

Show that
\begin{equation*} H_{1}(x)=\begin{cases} 2xH_{o}(x)\quad \text{for n even }\\ \frac{(n+1)!}{(n+1)/2!} \quad \text{for n odd }. \end{cases} \end{equation*}

23.

Prove that
\begin{equation*} L_{n}(x)= \sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!}\comb{n}{r}x^{r}. \end{equation*}

24.

Find the values of
  1. \begin{equation*} \int\limits_{0}^{\infty}e^{-x}L_{2}(x)L_{5}(x)\,dx \end{equation*}
    Answer.
    \begin{equation*} 0. \end{equation*}
  2. \begin{equation*} \int\limits_{0}^{\infty}e^{-x}L^{2}_{4}(x)\,dx \end{equation*}
    Answer.
    \begin{equation*} 1. \end{equation*}

25.

Prove that
\begin{equation*} L'_{n}(x)=xL'_{n-1}+nL_{n-1}(x) =0. \end{equation*}