The Fourier series expansion of a function \(f(x)\) is written as:
\begin{equation*}
f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos nx + b_{n}\sin nx\right],
\end{equation*}
where,
\begin{equation*}
a_{0}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \,dx = \frac{1}{\pi}\int\limits_{-\pi}^{\pi} x\,dx = 0.
\end{equation*}
\begin{equation*}
a_{n}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \cos nx\,dx = \frac{1}{\pi}\int\limits_{-\pi}^{\pi}x \cos nx \,dx = 0
\end{equation*}
and
\begin{equation*}
b_{n}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \sin nx\,dx = \frac{1}{\pi}\int\limits_{-\pi}^{\pi}x\sin nx\,dx = -\frac{2}{n}\cos n\pi = (-1)^{n+1}\frac{2}{n}
\end{equation*}
\begin{equation*}
\therefore f(x) = x = 2\sum\limits_{n=1}^{\infty}\left[(-1)^{n+1}\frac{\sin nx}{n}\right]
\end{equation*}
or,
\begin{equation*}
f(t) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos \left(\frac{n\pi t}{T}\right) + b_{n}\sin \left(\frac{n\pi t}{T}\right)\right]
\end{equation*}
where,
\begin{equation*}
a_{0}= \frac{2}{T}\int\limits_{0}^{T}f(t) \,dt = \frac{2}{T}\int\limits_{0}^{T}a\left(1-\frac{t}{T}\right)\,dt
\end{equation*}
\begin{equation*}
=\frac{2a}{T}\left[t-\frac{t^{2}}{2T}\right]_{0}^{T}= \frac{2a}{T}\left[T-\frac{T^{2}}{2T}\right] = a
\end{equation*}
which gives the ordinate of the axis of the curve.
\begin{equation*}
a_{n}= \frac{2}{T}\int\limits_{0}^{T}f(t) \cos \left(\frac{n\pi t}{T}\right)\,dt = \frac{2}{T}\int\limits_{0}^{T}a\left(1-\frac{t}{T}\right) \cos \left(\frac{n\pi t}{T}\right)\,dt
\end{equation*}
\begin{equation*}
= \frac{2a}{T}\int\limits_{0}^{T}\cos \left(\frac{n\pi t}{T}\right)\,dt - \frac{2a}{T^{2}}\int\limits_{0}^{T}t\cos \left(\frac{n\pi t}{T}\right)\,dt
\end{equation*}
\begin{equation*}
=- \frac{2a}{T^{2}}\int\limits_{0}^{T}t\cos \left(\frac{n\pi t}{T}\right)\,dt
\end{equation*}
\begin{equation*}
= -\frac{2a}{T^{2}}\left[t.\frac{(\sin n\pi t/T)}{n\pi/T}-1.\frac{\cos (n\pi t/T)}{-n^{2}\pi^{2}/T^{2}}\right]_{0}^{T}
\end{equation*}
\begin{equation*}
\left[ \because \quad \int\limits_{0}^{T}\cos \left(\frac{n \pi t}{T}\right)\,dt =0\right]
\end{equation*}
\begin{equation*}
=-\frac{2a}{T^{2}}\left[T.\frac{\sin n\pi}{n\pi/T}+\frac{\cos n\pi}{n^{2}\pi^{2}/T^{2}}-0-\frac{1}{n^{2}\pi^{2}/T^{2}}\right]
\end{equation*}
\begin{equation*}
=\frac{2a}{T^{2}(n^{2}\pi^{2}/T^{2})}\left[1-(-1)^{n}\right]
=\begin{cases}
0, & \text{for n is even}\\
\frac{4a}{n^{2}\pi^{2}}, & \text{for n is odd}.
\end{cases}
\end{equation*}
However, if the wave is expressed in terms of angular velocity \(\omega\text{,}\) the term \(\cos (n\pi t/T)\) had better replaced by \(cos n\omega t\) and in that case \(a_{n}=0\text{.}\) \([\because \omega = \frac{2\pi}{T}]\text{.}\) For \(b_{n}\text{,}\) we have
\begin{equation*}
b_{n} = \frac{2}{T}\int\limits_{0}^{T}f(t) \sin \left(\frac{n\pi t}{T}\right)\,dt = \frac{2}{T}\int\limits_{0}^{T}a\left(1-\frac{t}{T}\right) \sin \left(\frac{n\pi t}{T}\right)\,dt
\end{equation*}
\begin{equation*}
=\frac{2a}{T}\int\limits_{0}^{T} \sin \left(\frac{n\pi t}{T}\right)\,dt-\frac{2a}{T^{2}}\int\limits_{0}^{T} t\sin \left(\frac{n\pi t}{T}\right)\,dt
\end{equation*}
\begin{equation*}
=\frac{2a}{T}\left[\frac{\cos (n\pi t/T)}{-n\pi/T}\right]_{0}^{T}-\frac{2a}{T^{2}}\left[t\frac{\cos (n\pi t/T)}{-n\pi/T}-1.\frac{\sin (n\pi t/T)}{-n^{2}\pi^{2}/T^{2}}\right]_{0}^{T}
\end{equation*}
\begin{equation*}
= \frac{2a}{T}\left[\frac{T\cos n\pi}{-n\pi}+\frac{T}{n\pi}\right]-\frac{2a}{T^{2}}\left[\frac{T \cos n\pi}{-n\pi/T}-0+\frac{\sin n\pi}{n^{2}\pi^{2}/T^{2}}-0\right] = \frac{2a}{n\pi}
\end{equation*}
\begin{equation*}
\therefore \quad f(t) = \frac{a}{2}+\sum\limits_{n=1}^{\infty}\left[\frac{2a}{n^{2}\pi^{2}}\left\{1-(-1)^{n}\right\} \cos \left(\frac{n\pi t}{T}\right)+\frac{2a}{n\pi} \sin \left(\frac{n\pi t}{T}\right)\right].
\end{equation*}
The graph of the given function is shown in figure below.