Example 4.10.1.
Prove that
\begin{equation*}
H_{n}(-x)=(-1)^{n} H_{n}(x)
\end{equation*}
Solution.
We know that
\begin{equation*}
\sum_{n=0}^{\infty}\frac{H_{n}(x)}{n!}=e^{2zx-z^{2}} =e^{2zx}\cdot e^{-z^{2}}
\end{equation*}
\begin{equation*}
=\sum_{n=0}^{\infty}\frac{(2x)^{n}z^{n}}{n!}\cdot \sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n}}{n!}
\end{equation*}
\begin{equation*}
=\sum_{n=0}^{\infty}\sum_{s=0}^{\frac{n}{2}}\frac{(-1)^{s}(2x)^{n-2s}}{s!(n-2s)!}z^{n}
\end{equation*}
Equating the coefficient of \(\frac{z^{n}}{n!}\) on both sides, we get -
\begin{equation*}
H_{n}(x)=\sum_{s=0}^{\frac{n}{2}}\frac{(-1)^{s}n!(2x)^{n-2s}}{s!(n-2s)!}
\end{equation*}
Replacing \(x\) by \(-x\text{,}\) we get -
\begin{equation*}
H_{n}(-x)=\sum_{s=0}^{\frac{n}{2}}\frac{(-1)^{s}n!(-2x)^{n-2s}}{s!(n-2s)!} = \sum_{s=0}^{\frac{n}{2}}\frac{(-1)^{s}(-1)^{n-2s}n!(2x)^{n-2s}}{s!(n-2s)!}
\end{equation*}
\begin{equation*}
=(-1)^{n}\sum_{s=0}^{\frac{n}{2}}\frac{(-1)^{s}n!(2x)^{n-2s}}{s!(n-2s)!}=(-1)^{n}H_{n}(x)
\end{equation*}
\begin{equation*}
\therefore H_{n}(-x)=(-1)^{n} H_{n}(x)
\end{equation*}