Example 4.6.1.
Express \(f(x)=4x^{3}+6x^{2}+7x+2 \) in terms of Legendre’s Polynomials.
Solution.
Let
\begin{equation}
4x^{3}+6x^{2}+7x+2\equiv aP_{3}(x)+bP_{2}(x)+cP_{1}(x)+dP_{0}(x) \tag{4.6.1}
\end{equation}
\begin{equation*}
=a\left[\frac{5}{2}x^{3}-\frac{3x}{2}\right]+b\left[\frac{3}{2}x^{2}-\frac{1}{2}\right]+c(x)+d(1)
\end{equation*}
\begin{equation*}
=\frac{5ax^{3}}{2}-\frac{3ax}{2}+\frac{3bx^{2}}{2}-\frac{b}{2}+cx+d
\end{equation*}
\begin{equation*}
=\frac{5ax^{3}}{2}+\frac{3bx^{2}}{2}+\left(-\frac{3a}{2}+c\right)x-\frac{b}{2}+d
\end{equation*}
Equating the coefficients of like powers of \(x\text{,}\) we have
\begin{equation*}
\frac{5a}{2}=4 \quad \Rightarrow a =\frac{8}{5};
\end{equation*}
\begin{equation*}
\frac{3b}{2}=6 \quad \Rightarrow b =4
\end{equation*}
\begin{equation*}
\frac{-3a}{2}+c=7 \quad \Rightarrow -\frac{3}{2}\cdot\frac{8}{5}+c =7 \quad \Rightarrow c=\frac{47}{5}
\end{equation*}
\begin{equation*}
\frac{-b}{2}+d=2 \quad \Rightarrow -\frac{4}{2}+d=2 \quad \Rightarrow d=4.
\end{equation*}
Putting these values in eqn. (4.6.1), we get -
\begin{equation*}
\frac{8}{5}P_{3}(x)+4P_{2}(x)+\frac{47}{5}P_{1}(x)+4P_{0}(x)
\end{equation*}