Example 4.8.1.
Prove that \(J_{-n}(x)=(-1)^{n}J_{n}(x)\) where \(n\) is a positive integer.
Solution.
We have
\begin{equation*}
J_{-n}(x)=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!(-n+r)!}\left(\frac{x}{2}\right)^{-n+2r}
\end{equation*}
\begin{equation*}
=\sum\limits_{r=0}^{n-1}\frac{(-1)^{r}}{r!(-n+r)!}\left(\frac{x}{2}\right)^{-n+2r}+\sum\limits_{r=n}^{\infty}\frac{(-1)^{r}}{r!(-n+r)!}\left(\frac{x}{2}\right)^{-n+2r}
\end{equation*}
\begin{equation*}
=0+\sum\limits_{r=n}^{\infty}\frac{(-1)^{r}}{r!(-n+r)!}\left(\frac{x}{2}\right)^{-n+2r}
\end{equation*}
Since, \(!(-ve \quad integer) = \infty\text{.}\) Hence, for \(r=0,1,2,\cdots\text{,}\) we have
\begin{equation*}
\frac{1}{(-n+r)!}=0
\end{equation*}
putting \(r=n+s\text{,}\) where \(s\) is a positive integer, we have
\begin{equation*}
J_{-n}(x)=\sum\limits_{s=0}^{\infty}\frac{(-1)^{n+s}}{s!(n+s)!}\left(\frac{x}{2}\right)^{n+2s}
\end{equation*}
\begin{equation*}
=(-1)^{n}\sum\limits_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}\left(\frac{x}{2}\right)^{n+2s} =(-1)^{n}J_{n}(x)
\end{equation*}