Skip to main content

Subsection 6.1.9 Choice of infinite Sine or Cosine Transforms to Boundary Value Problems

The choice of sine or cosine transform is decided by the form of boundary conditions.
\begin{equation*} \mathscr{F}_{c}\{\frac{\partial^{2}u}{\partial x^{2}}\} = \int\limits_{0}^{\infty}\frac{\partial^{2}u}{\partial x^{2}}\cos sx\,dx = \left[\frac{\partial u}{\partial x}\cos sx\right]_{0}^{\infty} +s\int\limits_{0}^{\infty}\frac{\partial u}{\partial x}\sin sx\,dx \end{equation*}
\begin{equation*} =\left(-\frac{\partial u}{\partial x}\right)_{x=0}+s\left[u\sin sx\right]_{0}^{\infty} -s^{2}\int\limits_{0}^{\infty}u\cos sx\,dx \quad [\text{if}\quad \lim\limits_{x \to \infty}\frac{\partial u}{\partial x}=0.] \end{equation*}
\begin{equation} \therefore \quad \mathscr{F}_{c}\{\frac{\partial^{2}u}{\partial x^{2}}\} = \left(-\frac{\partial u}{\partial x}\right)_{x=0} -s^{2}\bar{u_{c}} \tag{6.1.12} \end{equation}
If
\begin{equation*} \lim\limits_{x \to \infty}u=0 \quad \text{and}\quad \int\limits_{0}^{\infty}u\cos sx\,dx = \bar{u_{c}}=\mathscr{F}_{c}\{u\} \end{equation*}
also,
\begin{equation*} \mathscr{F}_{s}\{\frac{\partial^{2}u}{\partial x^{2}}\} = \int\limits_{0}^{\infty}\frac{\partial^{2}u}{\partial x^{2}}\sin sx \,dx \end{equation*}
\begin{equation*} = \left[\frac{\partial^{2}u}{\partial x^{2}}\sin sx\right]_{0}^{\infty}-s\int\limits_{0}^{\infty}\frac{\partial u}{\partial x}\cos sx\,dx \end{equation*}
\begin{equation*} =-s\left[\left.u\cos sx\right\vert_{0}^{\infty}+s\int\limits_{0}^{\infty}u\sin sx\,dx\right] \end{equation*}
\begin{equation} \therefore \mathscr{F}_{s}\{\frac{\partial^{2}u}{\partial x^{2}}\}=s(u)_{x=0}-s^{2}\bar{u_{s}}\tag{6.1.13} \end{equation}
if
\begin{equation*} \lim\limits_{x \to \infty}u =0\quad \text{and}\quad \int\limits_{0}^{\infty}u\sin sx\,dx = \bar{u_{s}}. \end{equation*}
From equations (6.1.12) and (6.1.13), it follows that if we want to remove the term \(\frac{\partial^{2}u}{\partial x^{2}}\) from a given differential equation then we require
  1. \(\left(\frac{\partial u}{\partial x}\right)_{x=0}\) in cosine transform and
  2. \((u)_{x=0}\) in sine transform.