Let,
\begin{align*}
\vec{a} \amp = a_{1}\hat{i}+a_{2}\hat{j}+ a_{3}\hat{k}; \
quad \vec{b} = b_{1}\hat{i}+b_{2}\hat{j}+ b_{3}\hat{k}; \\
and, \vec{c} \amp = c_{1}\hat{i}+c_{2}\hat{j}+ c_{3}\hat{k}\\
\vec{l} \amp = l_{1}\hat{i}+l_{2}\hat{j}+ l_{3}\hat{k}, \quad
\vec{m} = m_{1}\hat{i}+m_{2}\hat{j}+ m_{3}\hat{k}, \\
and, \vec{n}\amp = n_{1}\hat{i}+n_{2}\hat{j}+ n_{3}\hat{k},
\end{align*}
then,
\begin{equation*}
\vec{l}\cdot \vec{a} = \left(l_{1}\hat{i}+l_{2}\hat{j}+ l_{3}\hat{k}\right)
\cdot \left(a_{1}\hat{i}+a_{2}\hat{j}+ a_{3}\hat{k}\right)
= l_{1}a_{1} + l_{2}a_{2} + l_{3}a_{3}
\end{equation*}
similarly, we can find the value of \(\vec{l}\cdot \vec{b}\text{,}\) \(\vec{l}\cdot \vec{c}\text{,}\) and \(\vec{m}\cdot \vec{a}\) etc. Now,
\begin{align*}
\left[\vec{l}\vec{m}\vec{n}\right]\left[\vec{a}\vec{b}\vec{c}\right] \amp
= {\begin{Vmatrix}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3} \\
n_{1} & n_{2} & n_{3}
\end{Vmatrix}}
{\begin{Vmatrix}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{Vmatrix}} \\
\amp = {\begin{Vmatrix}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3} \\
n_{1} & n_{2} & n_{3}
\end{Vmatrix}}
{\begin{Vmatrix}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{Vmatrix}}
\end{align*}
[using properties of determinant where rows, (or, column) can be exchanged without changing the value of determinant.]
\begin{equation*}
={\begin{Vmatrix}
l_{1} a_{1} + l_{2} a_{2} + l_{3} a_{3} & l_{1} b_{1} + l_{2} b_{2} + l_{3} b_{3} & l_{1} c_{1} + l_{2} c_{2} + l_{3} c_{3} \\
m_{1} a_{1} + m_{2} a_{2} + m_{3} a_{3} & m_{1} b_{1} + m_{2} b_{2} + m_{3} b_{3} & m_{1} c_{1} + m_{2} c_{2} + m_{3} c_{3} \\
n_{1} a_{1} + n_{2} a_{2} + n_{3} a_{3} & n_{1} b_{1} + nl_{2} b_{2} + n_{3} b_{3} & n_{1} c_{1} + n_{2} c_{2} + n_{3} c_{3}
\end{Vmatrix}}
\end{equation*}
\begin{equation*}
={\begin{Vmatrix}
\vec{l}\cdot \vec{a} & \vec{l}\cdot \vec{b} & \vec{l}\cdot \vec{c} \\
\vec{m}\cdot \vec{a} & \vec{m}\cdot \vec{b} & \vec{m}\cdot \vec{c} \\
\vec{n}\cdot \vec{a} & \vec{n}\cdot \vec{b} & \vec{n}\cdot \vec{c}
\end{Vmatrix}}.
\end{equation*}