Skip to main content

Section 5.4 Examples B

Example 5.4.1.

Obtain Fourier series expansion of \(f(x) = x^{2}\) from \(-\pi\) to \(\pi\text{,}\) and deduce \(\sum\limits_{n=1}^{\infty}\frac{1}{n^{2}}\text{,}\) also find the sum of series
\begin{equation*} \frac{1}{1^{2}} -\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots. \end{equation*}
Solution.
Let the given function is expanded in a Fourier series
\begin{equation*} f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos nx + b_{n}\sin nx\right] \end{equation*}
here, the function \(f(x) = x^{2}\) is an even function. Hence,
\begin{equation*} a_{0}= \frac{2}{\pi}\int\limits_{0}^{\pi}f(x)\,dx = \frac{2}{\pi}\int\limits_{0}^{\pi}x^{2} \,dx = \frac{2}{3}\pi^{2}; \end{equation*}
\begin{equation*} a_{n}= \frac{2}{\pi}\int\limits_{0}^{\pi}f(x) \cos nx\,dx = \frac{2}{\pi}\int\limits_{0}^{\pi} x^{2} \cos nx\,dx \end{equation*}
\begin{equation*} =\frac{2}{\pi}\left[x^{2}\left(\frac{\sin nx}{n}\right) -2 x \left(\frac{\cos nx}{-n^{2}}\right) + 2\left(\frac{\sin nx}{-n^{3}}\right)\right]_{0}^{\pi} \end{equation*}
\begin{equation*} = \frac{2}{\pi}\left[\frac{2 \pi \cos n \pi}{n^{2}}\right] = \frac{4}{n^{2}}(-1)^{n} \end{equation*}
\(\left[\because \left(\sin nx\right)_{0}^{\pi}=0\right]\)
\begin{equation*} \therefore x^{2} = \frac{2}{3.2}\pi^{2}+\sum\limits_{n=1}^{\infty}\frac{4}{n^{2}}(-1)^{n} \cos nx \end{equation*}
\begin{equation} = \frac{\pi^{2}}{3} -4\left[\frac{\cos x}{1^{2}}-\frac{\cos 2x}{2^{2}}+\frac{\cos 3x}{3^{2}}-\cdots\right] \tag{5.4.1} \end{equation}
which is the required Fourier series expansion of the given function. The graphical representation of this function is parabolic curves as shown in figure below.
As \(x=\pm \pi\) is a point of discontinuity, the series converges to
\begin{equation*} f(x) = \frac{1}{2}[f(-\pi+0) + f(\pi -0)] = \frac{1}{2}[\pi^{2}+\pi^{2}] = \pi^{2}. \end{equation*}
Therefore, from eqn. (5.4.1), we have
\begin{equation*} \pi^{2}=\frac{\pi^{2}}{3} - 4\left[-1-\frac{1}{2^{2}}-\frac{1}{3^{2}}-\cdots\right] \end{equation*}
or,
\begin{equation*} \frac{\pi^{2}}{6}=\sum\limits_{n=1}^{\infty}\frac{1}{n^{2}}. \end{equation*}
Also, at the point of continuity, i.e., at \(x=0\text{,}\) we have from eqn. (5.4.1),
\begin{equation*} 0= \frac{\pi^{2}}{3} -4\left[1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots\right] \end{equation*}
or,
\begin{equation*} 1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots = \frac{\pi^{2}}{12}. \end{equation*}

Example 5.4.2.

Obtain a Fourier series expansion of \(f(x) = x^{3}\) for \(-\pi \lt x \lt \pi\text{.}\)
Solution.
Let
\begin{equation*} f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos nx + b_{n}\sin nx\right] \end{equation*}
here, the given function is an odd function. Hence,
\begin{equation*} b_{n}= \frac{2}{\pi}\int\limits_{0}^{\pi} f(x) \sin nx \,dx = \frac{2}{\pi}\int\limits_{0}^{\pi} x^{3} \sin nx \,dx \end{equation*}
\begin{equation*} =\frac{2}{\pi}\left[x^{3}\frac{\cos nx}{-n} -3x^{2}\left(\frac{\sin nx}{-n^{2}}\right) +6 x \left(\frac{\cos nx}{-n^{3}}\right) -6\left(\frac{\sin nx}{n^{4}}\right)\right]_{0}^{\pi} \end{equation*}
\begin{equation*} = \frac{2}{\pi}\left[\pi^{3}\frac{\cos n\pi}{-n}+6\pi\left(\frac{\cos n\pi}{n^{3}}\right)\right] \end{equation*}
\([\because \left(\sin nx\right)_{0}^{\pi}=0] \)
\begin{equation*} =2(\cos n\pi)\left[-\frac{\pi^{2}}{n}+\frac{6}{n^{3}}\right] = 2(-1)^{n}\left[-\frac{\pi^{2}}{n}+\frac{6}{n^{3}}\right]. \end{equation*}
\begin{equation*} \therefore \quad x^{3}=2\sum\limits_{n=1}^{\infty}(-1)^{n}\left[-\frac{\pi^{2}}{n}+\frac{6}{n^{3}}\right]\sin nx. \end{equation*}

Example 5.4.3.

Obatin the Fourier series expansion of \(f(x)=x+x^{2}\) in the interval \(-\pi \lt x \lt \pi \text{,}\) also deduce
\begin{equation*} \frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots. \end{equation*}
Solution.
Let
\begin{equation*} f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos nx + b_{n}\sin nx\right] \end{equation*}
here,
\begin{equation*} a_{0}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\,dx \end{equation*}
\begin{equation*} = \frac{1}{\pi}\int\limits_{-\pi}^{\pi}(x+x^{2}) \,dx = \frac{1}{\pi}\left[\frac{x^{2}}{2}+\frac{x^{3}}{3}\right]_{-\pi}^{\pi}=\frac{2 \pi^{2}}{3}. \end{equation*}
\begin{equation*} a_{n}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \cos nx\,dx = \frac{1}{\pi}\int\limits_{-\pi}^{\pi} (x+x^{2}) \cos nx\,dx \end{equation*}
\begin{equation*} =\frac{1}{\pi}\left[\left\{(x+x^{2})\left(\frac{\sin nx}{n}\right)\right\}_{-\pi}^{\pi} \left\{(1+2 x) \left(\frac{\cos nx}{-n^{2}}\right)\right\}_{-\pi}^{\pi} \right. \end{equation*}
\begin{equation*} \left.+ \left\{2\left(\frac{\sin nx}{-n^{3}}\right)\right\}_{-\pi}^{\pi}\right]. \end{equation*}
\begin{equation*} =\frac{1}{\pi}\left[0+(1+2\pi)\left(\frac{\cos n\pi}{n^{2}}\right)-(1-2\pi)\left(\frac{\cos n\pi}{n^{2}}\right)+0\right] \end{equation*}
\([\because \cos (-\theta ) = \cos \theta ] \)
\begin{equation*} =\frac{1}{n^{2}\pi} \left[(1+2\pi)\cos n\pi -(1-2\pi)\cos n\pi\right] \end{equation*}
\begin{equation*} =\frac{1}{n^{2}\pi} \left[\cos n\pi +2\pi\cos n\pi-\cos n\pi+2\pi \cos n\pi\right] \end{equation*}
\begin{equation*} =\frac{1}{n^{2}\pi} \left[4\pi \cos n\pi\right] = \frac{4}{n^{2}}(-1)^{n}. \end{equation*}
and
\begin{equation*} b_{n}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \sin nx\,dx = \frac{1}{\pi}\int\limits_{-\pi}^{\pi} (x+x^{2}) \sin nx\,dx \end{equation*}
\begin{equation*} =\frac{1}{\pi}\left[(x+x^{2})\left(\frac{\cos nx}{-n}\right)-(1+2x)\left(\frac{\sin nx}{-n^{2}}\right)+2\left(\frac{\cos nx}{+n^{3}}\right)\right]_{-\pi}^{\pi} \end{equation*}
\begin{equation*} =\frac{1}{\pi}\left[\left\{(\pi+\pi^{2})\left(\frac{\cos n\pi}{-n}\right)-(-\pi+\pi^{2})\left(\frac{\cos n\pi}{-n}\right)\right\} \right. \end{equation*}
\begin{equation*} \left. + 0 +2\left(\frac{\cos n\pi}{n^{3}}-\frac{\cos n\pi}{n^{3}}\right)\right] \end{equation*}
\begin{equation*} =\frac{1}{\pi}\left[-\frac{1}{n}\left\{\pi+\pi^{2}+\pi-\pi^{2}\right\}\cos n\pi+0\right] \end{equation*}
\begin{equation*} =\frac{1}{\pi}\left[-\frac{2\pi}{n}\cos n\pi\right] = -\frac{2}{n}(-1)^{n}. \end{equation*}
Therefore, the expression \(f(x)\) becomes -
\begin{equation*} x+x^{2} = \frac{\pi^{2}}{3}+\frac{4}{n^{2}}(-)^{n}\cos nx-\frac{2}{n}(-1)^{n}\sin nx \end{equation*}
\begin{equation*} x+x^{2} = \frac{\pi^{2}}{3}+4\left[-\cos x + \frac{\cos 2x}{2^{2}}-\frac{\cos 3x}{3^{2}}+\cdots\right] \end{equation*}
\begin{equation} -2\left[-\sin x +\frac{\sin 2x}{2}-\frac{\sin 3x}{3}+\cdots\right] \tag{5.4.2} \end{equation}
As \(-\pi\) and \(\pi\) are points of discontinuties, the sum of the series of eqn. (5.4.2) is given by
\begin{equation*} f(x)=\frac{1}{2}\left[f(-\pi+0)+f(\pi-0)\right] =\frac{1}{2}\left[(-\pi+\pi^{2})+(\pi+\pi^{2})\right] \end{equation*}
\begin{equation*} =\frac{1}{2}[-\pi+\pi^{2}+\pi+\pi^{2}] = \frac{1}{2}.2\pi^{2}=\pi^{2}. \end{equation*}
Hence, from eqn. (5.4.2), we get -
\begin{equation*} \pi^{2}=\frac{\pi^{2}}{3}+4[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots]-2[0+0+\cdots] \end{equation*}
or,
\begin{equation*} \frac{\pi^{2}}{6} =1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots =\sum\limits_{n=1}^{\infty}\frac{1}{n^{2}}. \end{equation*}

Example 5.4.4.

Find the Fourier series for the periodic function \(f(x)\) defined by
\begin{equation*} f(x) = \begin{cases} -\pi, & \text{for } -\pi \lt x \lt 0\\ x, & \text{for} \quad 0 \lt x \lt \pi. \end{cases} \end{equation*}
Hence deduce that
\begin{equation*} \frac{\pi^{2}}{8}= \frac{1}{1^{2}}+ \frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots. \end{equation*}
Solution.
Let
\begin{equation*} f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos nx + b_{n}\sin nx\right] \end{equation*}
where
\begin{equation*} a_{0}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\,dx =\frac{1}{\pi}\left[\int\limits_{-\pi}^{0}-\pi \,dx + \int\limits_{0}^{\pi} x \,dx \right] \end{equation*}
\begin{equation*} = \frac{1}{\pi}\left[-\pi\left(x\right)_{-\pi}^{0}+\left(\frac{x^{2}}{2}\right)_{0}^{\pi}\right] \end{equation*}
\begin{equation*} = \frac{1}{\pi}\left[-\pi\left(+\pi\right)+\left(\frac{\pi^{2}}{2}\right)\right] = \frac{1}{\pi}\left[-\pi^{2}+\frac{\pi^{2}}{2}\right] = \frac{1}{\pi}\left[\frac{-\pi^{2}}{2}\right] = -\frac{\pi}{2}, \end{equation*}
and
\begin{equation*} a_{n}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \cos nx\,dx = \frac{1}{n^{2}\pi}\left[\cos n\pi-1\right] \end{equation*}
\begin{equation*} = \begin{cases} 0, & \text{if n is even}\\ -\frac{2}{n^{2}\pi}, & \text{if n is odd}, \end{cases} \end{equation*}
and
\begin{equation*} b_{n}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \sin nx\,dx = \frac{1}{\pi}\left[1-2\cos n\pi\right] \end{equation*}
\begin{equation*} =\begin{cases} -\frac{1}{n}, & \text{if n is even}\\ \frac{3}{n}, & \text{if n is odd,} \end{cases} \end{equation*}
Hence, the Fourier series expansion of the given function is
\begin{equation*} f(x) = -\frac{\pi}{4}-\frac{2}{\pi}\left\{\cos x+\frac{\cos 3x}{3^{2}}+\cdots\right\} \end{equation*}
\begin{equation} + \left\{3\sin x-\frac{\sin 2x}{2}+\frac{3\sin 3x}{3}-\cdots\right\} \tag{5.4.3} \end{equation}
The graphical representation of the function is shown in figure below.
There are three points of discontinuities at \(x=0\) \(\pi\text{,}\) and \(-\pi\) at \(x=0\text{,}\) the series converges to
\begin{equation*} f(x)=\frac{1}{2}\left[f(x+0)+f(x-0)\right] \end{equation*}
\begin{equation*} = \frac{1}{2}\left[f(0+0)+f(0-0)\right] = \frac{1}{2}\left[0+(-\pi)\right]=-\frac{\pi}{2} \end{equation*}
Therefore from eqn. (5.4.3), we have
\begin{equation*} -\frac{\pi}{2} = -\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots\right] +0 \end{equation*}
or,
\begin{equation*} \frac{\pi}{8} = \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots. \end{equation*}

Example 5.4.5.

Find the Fourier series of
\begin{equation*} f(x) = \begin{cases} 0, & \text{for } \quad -\pi \lt x \lt 0\\ \sin x, & \text{for} \quad 0 \lt x \lt \pi. \end{cases}. \end{equation*}
Hence deduce that
  1. \begin{equation*} \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots =\frac{1}{2} \end{equation*}
  2. \begin{equation*} \end{equation*}
\begin{equation*} \frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\cdots =\frac{\pi-2}{4} \end{equation*}
Solution.
Let
\begin{equation*} f(x) = \frac{a_{o}}{2} + \sum\limits_{n=1}^{\infty}\left[a_{n}\cos nx + b_{n}\sin nx\right] \end{equation*}
where,
\begin{equation*} a_{0}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\,dx \end{equation*}
\begin{equation*} =\frac{1}{\pi}\left[ 0 + \int\limits_{0}^{\pi} \sin x \,dx \right] = \frac{1}{\pi}\left[-\cos x \right]_{0}^{\pi} = \frac{2}{\pi} \end{equation*}
\begin{equation*} a_{n}= \frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x) \cos nx\,dx = \frac{1}{\pi}\int\limits_{0}^{\pi} \sin x \cos nx\,dx \end{equation*}
\begin{equation*} = \begin{cases} -\frac{2}{\pi(n^{2}-1)}, & \text{if n is even}\\ 0, & \text{if n is odd}, \end{cases} \end{equation*}
\begin{equation*} b_{n}= \frac{1}{\pi}\int\limits_{0}^{\pi}\sin x \sin nx\,dx = \frac{1}{2}+0 \end{equation*}
[\(\because \) for n=1, \(b_{1}=\frac{1}{2}\)]
\begin{equation} \therefore \quad f(x) = \frac{1}{\pi}-\sum\limits_{m=0}^\infty \left(\frac{2}{\pi(4m^2-1)}\right)\cos 2mx +\frac{1}{2}\sin x; \tag{5.4.4} \end{equation}
where n=2m. The graphical representation of the function is shown in figure below.
put \(x=0\) and \(x=\frac{\pi}{2}\) in eqn. (5.4.4) to deduce the series for a. and b., respectively.