Skip to main content

Section 2.2 ExamplesA

Example 2.2.1.

Obtain a set of three orthonormal vectors by the Schmidt’s method from the vectors \(u_{1}=(1,0,0)\text{,}\) \(u_{2}=(1,1,0)\text{,}\) and \(u_{3}=(1,1,1).\)
Solution.
The given vectors are linearly independent, hence set,
\begin{equation*} v_{1}=u_{1}. \end{equation*}
Let,
\begin{equation*} v_{2}=u_{2}+\lambda v_{1} \end{equation*}
We have -
\begin{equation*} \lt v_{1}, u_{2}\gt = (1\times 1+0\times 1+0\times 0) =1 \end{equation*}
and
\begin{equation*} \lt v_{1}, v_{1}\gt = (1\times 1+0\times 0+0\times 0) =1 \end{equation*}
\begin{equation*} \therefore \lambda = -\frac{\lt v_{1}, u_{2}\gt}{\lt v_{1}, v_{1}\gt} = -\frac{1}{1}=-1 \end{equation*}
Hence,
\begin{equation*} v_{2}=u_{2}-v_{1} = (1,1,0)-(1,0,0) = (1-1, 1-0, 0-0)=(0,1,0) \end{equation*}
Now take
\begin{equation*} v_{3}=u_{3}+\lambda_{1} v_{1} + \lambda_{2} v_{2} \end{equation*}
where,
\begin{equation*} \lambda_{1}= -\frac{\lt v_{1}, u_{3}\gt}{\lt v_{1}, v_{1}\gt} \end{equation*}
and
\begin{equation*} \lambda_{2}= -\frac{\lt v_{2}, u_{3}\gt}{\lt v_{2}, v_{2}\gt} \end{equation*}
Here,
\begin{equation*} \lt v_{1}, u_{3}\gt = (1\times 1+0\times 1+0\times 1) =1; \end{equation*}
\begin{equation*} \lt v_{1}, v_{1}\gt = (1\times 1+0\times 0+0\times 0) =1; \end{equation*}
\begin{equation*} \lt v_{2}, u_{3}\gt = (0\times 1+1\times 1+0\times 1)=1; \end{equation*}
and
\begin{equation*} \lt v_{2}, v_{2}\gt = (0\times 0+1\times 1+0\times 0) =1. \end{equation*}
\begin{equation*} \therefore \lambda_{1} = -\frac{1}{1} =-1, \quad \text{and}\quad \lambda_{2} = -\frac{1}{1} =-1. \end{equation*}
Hence,
\begin{equation*} v_{3} = u_{3}=v_{1}-v_{2} =(1-1-0, 1-0-1, 1-0-0) =(0,0,1). \end{equation*}
The corresponding orthonormal set is
\begin{equation*} x_{1}= \frac{v_{1}}{\parallel v_{1} \parallel} = \frac{(1,0,0)}{\sqrt{1+0+0}} = \frac{1}{\sqrt{1}}(1,0,0); \end{equation*}
\begin{equation*} x_{2}= \frac{v_{2}}{\parallel v_{2} \parallel} = \frac{(0,1,0)}{\sqrt{1}}; \end{equation*}
\begin{equation*} \text{and} \quad x_{3}= \frac{(0,0,1)}{\sqrt{1}}. \end{equation*}

Example 2.2.2.

Test whether the vectors
\begin{equation*} \begin{bmatrix} 1\\2\\3 \end{bmatrix},\quad \begin{bmatrix} 3\\-1\\1 \end{bmatrix},\quad \text{and}\quad \begin{bmatrix} 1\\1\\2 \end{bmatrix}. \end{equation*}
are linearly independent. If so construct an orthonormal system using Gram-Schmidt’s method.
Solution.
\begin{equation*} \text{Let} \quad u_{1}= {\begin{bmatrix} 1\\2\\3 \end{bmatrix}}, \quad u_{2}={\begin{bmatrix} 3\\-1\\1 \end{bmatrix}}, \quad \text{and}\quad u_{3}= {\begin{bmatrix} 1\\1\\2 \end{bmatrix}} \end{equation*}
then, \(k_{1}u_{1}+k_{2}u_{2}+k_{3}u_{3}=0\) implies
\begin{align} k_{1}+3k_{2}+k_{3} \amp =0 \tag{2.2.1}\\ 2k_{1}-k_{2}+k_{3} \amp = 0\tag{2.2.2}\\ \text{and} \hspace{3pt} 3k_{1}+k_{2}+2k_{3} \amp =0\tag{2.2.3} \end{align}
These equations are satisfied only when \(k_{1} = k_{2} =k_{3} =0\text{,}\) i.e. \(u_{1}{,} u_{2}\text{,}\) and \(u_{3}\) are linearly independent. Again, Let \(\left\{x_{1},x_{2},x_{3}\right\}\) be an orthonormal basis. Then by Gram-Schmidt’s method:
\begin{equation*} v_{1}=u_{1}, \qquad \therefore x_{1}= \frac{v_{1}}{\parallel v_{1} \parallel} = {\begin{bmatrix} \frac{1}{\sqrt{14}}\\ \frac{2}{\sqrt{14}}\\ \frac{3}{\sqrt{14}} \end{bmatrix}}; \end{equation*}
\begin{equation*} \text{Now,}\quad \lambda=-\frac{(v_{1},u_{2})}{(v_{1},v_{1})} = - \frac{4}{14} = -\frac{2}{7} \end{equation*}
\begin{equation*} \left[\because (v_{1},v_{1})= v_{1}'\cdot v_{1} = [1 2 3]{\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}} =1+4+9 =14;\right. \end{equation*}
\begin{equation*} \left.(v_{1},u_{2})= v_{1}'\cdot u_{2} = [1 2 3]{\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}}=3-2+3=4\right]. \end{equation*}
We have -
\begin{equation*} v_{2} = u_{2}+\lambda v_{1} = {\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}} - \frac{2}{7}{\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}} = {\begin{bmatrix} 19/7 \\ -11/7 \\ 1/7 \end{bmatrix}} \end{equation*}
\begin{equation*} \therefore x_{2}= \frac{v_{2}}{\parallel v_{2} \parallel} =\frac{1}{\sqrt{483}} {\begin{bmatrix} 19\\ -11\\ 1 \end{bmatrix}}; \end{equation*}
\begin{equation*} v_{3} = u_{3}+\lambda_{1} v_{1}+\lambda_{2} v_{2} \end{equation*}
where,
\begin{equation*} \lambda_{1} = -\frac{(v_{1},u_{3})}{(v_{1},v_{1})}\quad \text{and} \quad \lambda_{2} =-\frac{(v_{2},u_{3})}{(v_{2},v_{2})} \end{equation*}
\begin{equation*} \therefore \quad x_{3}= \frac{v_{3}}{\parallel v_{3} \parallel} \end{equation*}
can be obtained.

Example 2.2.3.

How are the components of vectors and linear operator transform when we change the coordinate system.
Solution.
Consider a basis vector \(\psi'_{j}\) defined in terms of the unprimed system by \(\psi'_{j}=\sum\limits_{i}r_{ij}\psi_{i}\text{.}\) The coefficient \(r_{ij}\) is \(i^{th}\) components of \(\psi'_{j}\) in the unprimed system. Consider an arbitrary vector \(\psi\) with components \(c_{i}\) and \(c'_{j}\) in the two systems, then
\begin{equation*} \psi=\sum\limits_{i}c_{i}\psi_{i} = \sum\limits_{j}c'_{j}\psi'_{j} = \sum\limits_{j}c'_{j}\sum\limits_{i}r_{ij}\psi_{i} \end{equation*}
Therefore, \(c_{i} = \sum\limits_{j}r_{ij}c'_{j}\) which is equivalent to the matrix equation \(\psi = \gamma\psi'\) multiplying it by \(\gamma^{-1}\) on both sides, we get -
\begin{equation*} \gamma^{-1}\psi =\gamma^{-1}\psi'\gamma^{-1} \end{equation*}
\begin{equation*} \text{or,} \quad \psi' =\gamma^{-1}\psi \end{equation*}
then we find the transformation for the components of linear operators by \(\phi = \hat{A} \psi \) as matrix equations in the two coordinates system, \(\phi = \hat{A} \psi\) and \(\phi' = \hat{A'} \psi' \text{.}\) As
\begin{align*} \gamma\phi' \amp = \hat{A'} \gamma\psi' \\ \phi' \amp = \gamma^{-1}\hat{A'} \gamma\psi'= \hat{A'} \psi' \end{align*}
Thus the desired transformation is
\begin{equation*} A'=\gamma^{-1}A\gamma \end{equation*}
\begin{equation*} \text{or,}\quad A=\gamma \,A' \,\gamma^{-1}. \end{equation*}
This is an example of a similarity transformation which is defined to be a transformation of square matrices of the form \(A'=s^{-1} A s\text{.}\) Any algebric matrix remains unchanged under a similarity transformation. For example:
\begin{equation*} ABCD + \lambda D = 0 \quad \Rightarrow s^{-1}A(s s^{-1})B(s s^{-1})Cs+ s^{-1}\lambda D s = 0 \end{equation*}
\begin{equation*} \text{or,}\quad A'B'C'+\lambda D' = 0. \end{equation*}