Skip to main content

Subsection 7.1.2 D’Alembert’s Solution of Vibrating String

The equation of vibrating string is given by
\begin{equation} \frac{\partial^{2} y}{\partial x^{2}} = \frac{1}{v^{2}}\frac{\partial^{2} y}{\partial t^{2}} \tag{7.1.25} \end{equation}
The solution of equation (7.1.25) may be obtained by changing the variable \(x\) and \(t\) in the other parameters as \(p=x+vt\text{,}\) and \(q=x-vt\text{,}\) so that
\begin{equation*} \frac{\partial p}{\partial x}=\frac{\partial q}{\partial x}=1\quad \text{and}\quad \frac{\partial p}{\partial t} =v, \frac{\partial q}{\partial t} =-v, \quad \text{now,}\quad y=f(p,q) \end{equation*}
or,
\begin{equation*} \frac{\partial y}{\partial x} = \frac{\partial y}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial y}{\partial q} \frac{\partial q}{\partial x} \end{equation*}
at constant \(t\text{.}\) Or,
\begin{equation} \frac{\partial y}{\partial x} = \frac{\partial y}{\partial p}+\frac{\partial y}{\partial q}\tag{7.1.26} \end{equation}
In operator form
\begin{equation} \frac{\partial}{\partial x} \equiv \frac{\partial}{\partial p}+\frac{\partial}{\partial q}\tag{7.1.27} \end{equation}
and
\begin{equation*} \frac{\partial^{2}y}{\partial x^{2}}=\frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x}\right)= \left(\frac{\partial}{\partial p}+\frac{\partial}{\partial q}\right)\left(\frac{\partial y}{\partial p}+\frac{\partial y}{\partial q}\right) \end{equation*}
\begin{equation} = \frac{\partial^{2}y}{\partial p^{2}}+2\frac{\partial^{2}y}{\partial p \partial q}+\frac{\partial^{2}y}{\partial q^{2}}\tag{7.1.28} \end{equation}
also
\begin{equation*} \frac{\partial y}{\partial t}=\frac{\partial y}{\partial p}\frac{\partial p}{\partial t}+\frac{\partial y}{\partial q}\frac{\partial q}{\partial t} \end{equation*}
at constant \(x\text{.}\) Or,
\begin{equation*} \frac{\partial y}{\partial t}=v\left[\frac{\partial y}{\partial p}-\frac{\partial y}{\partial q}\right] \end{equation*}
i.e.,
\begin{equation*} \frac{\partial}{\partial t}=v\left[\frac{\partial}{\partial p}-\frac{\partial}{\partial q}\right] \end{equation*}
and
\begin{equation*} \frac{\partial^{2}y}{\partial t^{2}}=\frac{\partial}{\partial t} \left(\frac{\partial y}{\partial t}\right)= v^{2}\left(\frac{\partial}{\partial p}-\frac{\partial}{\partial q}\right)\left(\frac{\partial y}{\partial p}-\frac{\partial y}{\partial q}\right) \end{equation*}
\begin{equation} = v^{2}\frac{\partial^{2}y}{\partial p^{2}}+2\frac{\partial^{2}y}{\partial p \partial q}+\frac{\partial^{2}y}{\partial q^{2}} \tag{7.1.29} \end{equation}
Substituting the values of equation (7.1.28) and (7.1.29) in equation (7.1.25), we get -
\begin{equation*} \frac{\partial^{2}y}{\partial p\partial q}=0. \end{equation*}
Integrating this expression with respect to \(q\text{,}\) we get -
\begin{equation*} \int\frac{\partial}{\partial q}\left(\frac{\partial y}{\partial p}\right)\,dq=\int 0.\,dq \end{equation*}
or,
\begin{equation*} \frac{\partial y}{\partial p} = constant = f(p)\quad \text{(say)}. \end{equation*}
Integrating it again w. r. t. ’p’, we get -
\begin{equation*} y=\int f(p) \,dp + constant. =\phi(p) + \psi(q) \quad \text{(say)}. \end{equation*}
\begin{equation} \therefore \quad y(x,t) = \phi(x+vt) + \psi(x-vt)\tag{7.1.30} \end{equation}
This is a D’ Alembert’s solution of one - dimensional wave equation (7.1.25). Physically equation (7.1.30) represents two plane waves travelling in opposite directions with the same velocity and same period. Verification of equation (7.1.30) with the help of boundary conditions
\begin{equation} y(0,t) = 0 = y(l,t) \tag{7.1.31} \end{equation}
and the initial conditions
\begin{equation} y(x,0) =f(x)\tag{7.1.32} \end{equation}
and
\begin{equation} \left(\frac{\partial y}{\partial t}\right)_{t=0} =f'(x)\tag{7.1.33} \end{equation}
from equation (7.1.30), we have
\begin{equation} \frac{\partial y}{\partial t} =v\phi'(x+vt)-v\psi'(x-vt)\tag{7.1.34} \end{equation}
using equation (7.1.32), equation (7.1.30) becomes
\begin{equation} y(x,0) =f(x)=\phi(x)+\psi(x)\tag{7.1.35} \end{equation}
and using equation (7.1.33) in equation (7.1.34), we get -
\begin{equation} \frac{\partial y}{\partial t} =f'(x) = v[\phi'(x)-\psi'(x)] \tag{7.1.36} \end{equation}
assuming \(f'(x)=0\text{,}\) we have from equation (7.1.36),
\begin{equation*} v[\phi'(x)-\psi'(x)]=0 \end{equation*}
or,
\begin{equation*} \phi'(x) = \psi'x) \end{equation*}
which on integrating gives
\begin{equation} \phi(x) =\psi(x)+\lambda \tag{7.1.37} \end{equation}
putting equation (7.1.37), in equation (7.1.35), we get -
\begin{equation} \phi(x)=\frac{1}{2}[f(x)+\lambda]\tag{7.1.38} \end{equation}
and
\begin{equation} \psi(x)=\frac{1}{2}[f(x)-\lambda]\tag{7.1.39} \end{equation}
with the help of equations (7.1.38) and (7.1.39), equation (7.1.30) yields
\begin{equation} y(x,t) = \frac{1}{2}[f(x+vt)+f(x-vt)]\tag{7.1.40} \end{equation}
which reduces to
\begin{equation} y(0,t) = \frac{1}{2}[f(vt)+f(-vt)]\tag{7.1.41} \end{equation}
and
\begin{equation} y(l,t) = \frac{1}{2}[f(l+vt)+f(l-vt)]\tag{7.1.42} \end{equation}
It follows from equations (7.1.41) and (7.1.42) that the function \(f\) is odd and periodic with period \(2l\) and hence equation (7.1.40) is the solution of equation (7.1.25).