Skip to main content

Exercises 6.7 Exercise

1.

Calculate the cosine transform of \(e^{-x^{2}}\text{.}\)
Answer.
\(\frac{\sqrt{\pi}}{2}e^{-s^{2}/4}\text{.}\)

2.

Find cosine transform of function \(f(x)\) such that
\begin{equation*} f(x)=\begin{cases} \cos x, & \text{when} \quad 0 \lt x \lt a\\ 0, & \text{when} \quad x \gt a \end{cases} \end{equation*}
Answer.
\begin{equation*} \frac{1}{2}\left[\frac{\sin(1+s)a}{1+s}+\frac{\sin(1-s)a}{1-s}\right] \end{equation*}

3.

Calculate the cosine and sine transforms of \(e^{-bx}\text{,}\) where b is a positive integer.
Answer.
\(\frac{b}{b^{2}+s^{2}} \) and \(\frac{s}{s^{2}+b^{2}}\)

4.

Find the Fourier complex transform of \(f(x)\text{,}\) if
\begin{equation*} f(x)=\begin{cases} e^{-i\omega x}, & \text{when} \quad a \lt x \lt b\\ 0, & \text{when} \quad x \lt a, x \gt b \end{cases} \end{equation*}
Answer.
\begin{equation*} i\left[\frac{e^{-i(s_\omega)b}-e^{-i(s_\omega)a}}{s+\omega}\right] \end{equation*}

5.

Find \(\mathscr{L}\{t\cos at\}\)
Answer.
\begin{equation*} \frac{s^{2}-a^{2}}{(s^{2}-a^{2})^{2}}. \end{equation*}

6.

Evaluate
\begin{equation*} \mathscr{L}\{\frac{\sin t}{t}\} \end{equation*}
Answer.
\begin{equation*} \cot^{-1}s. \end{equation*}

7.

Find the Laplace Transform of \(f(t)\) defined as
\begin{equation*} f(t) =\begin{cases} t+1, \quad 0 \leq t \leq 2\\ 3, \quad t \gt 2 \end{cases} \end{equation*}
Answer.
\begin{equation*} \frac{1}{s^{2}}[s+1-e^{-2s}]. \end{equation*}

8.

Find
\begin{equation*} \mathscr{L}^{-1}\{\frac{1}{s^{4}}\} \end{equation*}
Answer.
\begin{equation*} \frac{t^{3}}{6}. \end{equation*}

9.

Find inverse Laplace transform of \(\frac{3s+7}{s^{2}-2s-3}\text{.}\)
Answer.
\(4e^{3t}-e^{-t}.\)

10.

Evaluate
\begin{equation*} \mathscr{L}^{-1}\{\frac{2s-1}{s^{2}-s}\} \end{equation*}
Answer.
\begin{equation*} 1-\frac{3}{2}e^{-t}+\frac{1}{2}e^{t}. \end{equation*}

11.

Use convolution theorem to find
\begin{equation*} \mathscr{L}^{-1}\{\frac{s^{2}}{(s^{2}+4)^{2}}\} \end{equation*}
Answer.
\begin{equation*} \frac{1}{2}\left[t\cos 2t+\frac{1}{2}\sin 2t\right]. \end{equation*}

12.

Using Laplace transform, solve the following differential equation
\begin{equation*} y''+2y'+2y = 5\sin t \end{equation*}
where \(y(0)=y'(0)=0\) at \(t=0\text{.}\)
Answer.
\begin{equation*} e^{-t}[\cos t+\sin t]-2\cos t+\sin t. \end{equation*}

13.

Prove that
\begin{equation*} \int\limits_{0}^{\infty}e^{-x^{2}}\,dx = \frac{\pi}{2}. \end{equation*}