Skip to main content Contents Index
Prev Up Next \(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\T}{\mathcal T}
\newcommand\comb[2]{^{#1}C{_{#2}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection 1.1.3 Dividing the line segments
Let the point P divides the line AB in the ratio of
\(m:n\text{.}\) If
\(\vec{a}\) \(\vec{b}\) and be the position vectors of points A and B, respectively then the position vector of point P is determined as
\(\vec{OA} = \vec{a}\) and
\(\vec{OB}= \vec{b}\text{.}\) Since point P divides the line AB in the ratio of
\(m:n\text{,}\) as shown in
Figure 1.1.2.(c) , we have
\begin{align*}
\dfrac{\vec{AP}}{\vec{PB}} \amp = \dfrac{m}{n}\\
\text{or,} \quad n \vec{AP} \amp = m \vec{PB}\\
\text{or,} \quad n\big (\vec{OP}-\vec{OA}\big) \amp = m \big (\vec{OB}-\vec{OP}\big)\\
\text{or,} \quad (m + n)\vec{OP}\amp = m\vec{OB}+n\vec{OA}\\
\text{or,} \quad \vec{OP} \amp = \frac{n\vec{a}+m\vec{b}}{m+n}
\end{align*}
Corollary 1.1.3 .
If P be the mid - point of line AB, then \(m = n\) and \(\vec{OP}
=\frac{1}{2} (\vec{a}+\vec{b})\text{.}\)