Example 1.7.1.
Prove that a cylindrical coordinate system is orthogonal.
Solution.
The position vector of any point P in a cylindrical coordinate is
\begin{equation*}
\vec{r}= x\hat{i}+y\hat{j}+z\hat{k}= \rho\cos\phi\hat{i}+\rho\sin\phi\hat{j}+z\hat{k}
\end{equation*}
Now,
\begin{equation*}
\frac{\partial \vec{r}}{\partial \rho}, \frac{\partial \vec{r}}{\partial \phi}, \frac{\partial \vec{r}}{\partial z}
\end{equation*}
are the tangent vectors along the curves \(\rho, \phi,z,\text{,}\) respectively.
\begin{equation*}
\therefore \quad \frac{\partial \vec{r}}{\partial \rho} = \cos\phi\hat{i}+\sin\phi\hat{j},
\end{equation*}
\begin{equation*}
\frac{\partial \vec{r}}{\partial \phi} = -\rho\sin\phi\hat{i}+\rho\cos\phi\hat{j},
\end{equation*}
\begin{equation*}
\text{and} \quad \frac{\partial \vec{r}}{\partial z} = \hat{k}.
\end{equation*}
The unit vectors along the tangents are
\begin{equation*}
\hat{e}_{1}=\hat{e}_{\rho}=\frac{\frac{\partial \vec{r}}{\partial \rho}}{\mid\frac{\partial \vec{r}}{\partial \rho}\mid}
\end{equation*}
\begin{equation}
= \frac{\cos\phi\hat{i}+\sin\phi\hat{j}}{\sqrt{\cos^{2}\phi + \sin^{2}\phi}} = \cos\phi\hat{i}+\sin\phi\hat{j},\tag{1.7.1}
\end{equation}
\begin{equation*}
\hat{e}_{2}=\hat{e}_{\phi}=\frac{\frac{\partial \vec{r}}{\partial \phi}}{\mid\frac{\partial \vec{r}}{\partial \phi}\mid}
\end{equation*}
\begin{equation}
= \frac{-\rho\sin\phi\hat{i}+\rho\cos\phi\hat{j}}{\sqrt{\rho^{2}\sin^{2}\phi + \rho^{2}\cos^{2}\phi}} = -\sin\phi\hat{i}+\cos\phi\hat{j},\tag{1.7.2}
\end{equation}
\begin{equation}
\hat{e}_{3}=\hat{e}_{z}=\frac{\frac{\partial \vec{r}}{\partial z}}{\mid\frac{\partial \vec{r}}{\partial z}\mid} = \hat{k}\tag{1.7.3}
\end{equation}
Then,
\begin{equation*}
\hat{e}_{1}\cdot\hat{e}_{2} = (\cos\phi\hat{i}+\sin\phi\hat{j})\cdot(-\sin\phi\hat{i}+\cos\phi\hat{j}) = 0,
\end{equation*}
\begin{equation*}
\hat{e}_{1}\cdot\hat{e}_{3} = (\cos\phi\hat{i}+\sin\phi\hat{j})\cdot (\hat{k})=0,
\end{equation*}
and
\begin{equation*}
\hat{e}_{2}\cdot\hat{e}_{3} = (-\sin\phi\hat{i}+\cos\phi\hat{j})\cdot (\hat{k}) = 0.
\end{equation*}
Hence \(\hat{e_{1}}, \hat{e_{2}}\text{,}\) and \(\hat{e_{3}}\) are mutually perpendicular and the coordinate system is orthogonal.