Skip to main content

Subsection 4.7.1 Bessel’s Functions, \(J_{n}(x)\)

The Bessel’s function is
\begin{equation*} J_{n}(x)=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!(n+r)!}\left(\frac{x}{2}\right)^{n-2r} \end{equation*}
If \(n=0\)
\begin{equation*} J_{o}(x)=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{(r!)^{2}}\left(\frac{x}{2}\right)^{2r} \end{equation*}
or,
\begin{equation*} J_{o}(x) = 1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2}\cdot 4^{4}}-\frac{x^{6}}{2^{2}\cdot 4^{2}\cdot 6^{2}}+\cdots \end{equation*}
If \(n=1\text{,}\)
\begin{equation*} J_{1}(x)=\frac{x}{2}-\frac{x^{3}}{2^{2}\cdot 4}+\frac{x^{5}}{2^{2}\cdot 4^{4}\cdot 6}-\cdots \end{equation*}
The graph of these functions are damped oscillatory with a varying period, as shown in figure Figure 4.7.1.
Figure 4.7.1. Bessel’s Function

Subsubsection 4.7.1.1 Generating Function for \(J_{n}(x)\)

\(J_{n}(x)\text{,}\) the Bessel’s function of first kind is the coefficient of \(z^{n}\) in the expansion of
\begin{equation} e^{\frac{x}{2}(z-\frac{1}{z})}=\sum\limits_{n=-\infty}^{\infty}J_{n}(x) z^{n}\tag{4.7.9} \end{equation}

Proof.

we know that \(e^{t}=1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!} +\cdots\)
\begin{equation*} \therefore e^{\frac{xz}{2}}=1+\frac{xz}{2}+\frac{1}{2!}\left(\frac{xz}{2}\right)^{2}+\frac{1}{3!}\left(\frac{xz}{2}\right)^{3}+\cdots \end{equation*}
\begin{equation} = \sum\limits_{r=0}^{\infty}\frac{x^{r}z^{r}}{2^{r}r!}\tag{4.7.10} \end{equation}
and
\begin{equation*} e^{-\frac{x}{2z}}=1-\left(\frac{x}{2z}\right)+\frac{1}{2!}\left(\frac{x}{2z}\right)^{2}-\frac{1}{3!}\left(\frac{x}{2z}\right)^{3}+\cdots \end{equation*}
\begin{equation} = \sum\limits_{s=0}^{\infty}(-1)^{s}\frac{x^{s}}{2^{s}z^{s}s!}\tag{4.7.11} \end{equation}
Multiplying equations (4.7.10) and (4.7.11), we get -
\begin{equation} e^{\frac{x}{2}(z-\frac{1}{z})}=\sum\limits_{r=0}^{\infty}\frac{x^{r}z^{r}}{2^{r}r!}\sum\limits_{s=0}^{\infty}(-1)^{s}\frac{x^{s}}{2^{s}z^{s}s!}\tag{4.7.12} \end{equation}
Replacing \(r\) by \(n+s\text{,}\) we get the coefficient of \(z^{n}\) as
\begin{equation*} e^{\frac{x}{2}(z-\frac{1}{z})} = \sum\limits_{s=-n}^{-1}\{\}z^{n+s}+\sum\limits_{s=0}^{\infty}\frac{x^{n+s}}{2^{n+s}(n+s)!}z^{n+s}\frac{(-1)^{s}x^{s}}{2^{s}z^{s}s!} \end{equation*}
\begin{equation*} =\{\}z^{0}+\cdots\{\}z^{n-1}+\sum\limits_{s=0}^{\infty}\frac{x^{n+s}}{2^{n+s}(n+s)!}z^{n+s}\frac{(-1)^{s}x^{s}}{2^{s}z^{s}s!} \end{equation*}
\begin{equation*} =\sum\limits_{s=0}^{\infty}\frac{(-1)^{s}x^{n+2s}}{s!(n+s)!2^{n+2s}}z^{n} \end{equation*}
\begin{equation} =\sum\limits_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}\left(\frac{x}{2}\right)^{n+2s}z^{n}=J_{n}(x)z^{n}\tag{4.7.13} \end{equation}
The coefficient of \(z^{-n}\) is obtained by putting \(s=n+r\text{,}\) so we have
\begin{equation*} \sum\limits_{r=0}^{\infty}\frac{x^{r}z^{r}}{2^{r}r!}\cdot\frac{(-1)^{n+r}x^{n+r}}{2^{n+r}(n+r)!z^{n+r}} \end{equation*}
\begin{equation*} =(-1)^{n}\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r}z^{-n} \end{equation*}
\begin{equation} =(-1)^{n}J_{n}(x)z^{-n}=J_{-n}(x)z^{-n}\tag{4.7.14} \end{equation}
From equations (4.7.13) and (4.7.14), we have
\begin{equation} e^{\frac{x}{2}(z-\frac{1}{z})}=\sum\limits_{n=-\infty}^{\infty}J_{n}(x)z^{n}\tag{4.7.15} \end{equation}
This is the reason that \(e^{\frac{x}{2}(z-\frac{1}{z})}\) is said to be generating function of Bessel’s functions. The generating function also express the trigonometric functions as expansions involving Bessel’s functions. For this purpose put \(z=e^{i\theta}\) in the generating function. That is,
\begin{equation*} e^{\frac{x}{2}(z-\frac{1}{z})}=\sum\limits_{n=-\infty}^{\infty}J_{n}(x)z^{n} \end{equation*}
or,
\begin{equation*} e^{\frac{x}{2}(e^{i\theta}-e^{-i\theta})}=e^{ix\sin\theta}=\sum\limits_{n=-\infty}^{\infty}J_{n}(x)e^{ni\theta} \end{equation*}
or,
\begin{equation*} \cos(x\sin\theta)+i\sin(x\sin\theta) \end{equation*}
\begin{equation*} =J_{o}(x)+\{J_{1}(x)e^{i\theta}+J_{-1}(x)e^{-i\theta}\}+\{J_{2}(x)e^{2i\theta}+J_{-2}(x)e^{-2i\theta}\}+\cdots \end{equation*}
\begin{equation*} =J_{o}(x)+\{J_{1}(x)e^{i\theta}-e^{-i\theta}\}+\{J_{2}(x)e^{2i\theta}+e^{-2i\theta}\}+\cdots \end{equation*}
\([\because J_{-n}(x)=(-1)^{n}J_{n}(x)]\)
\begin{equation*} =J_{o}(x)+2i\sin\theta J_{1}(x)+2\cos2\theta J_{2}(x)+\cdots \end{equation*}
Equating real and imaginary parts, we get -
\begin{equation} \cos(x\sin\theta)=J_{o}(x)+2 J_{2}(x)\cos2\theta +2 J_{4}(x)\cos4\theta+\cdots\tag{4.7.16} \end{equation}
and
\begin{equation} \sin(x\sin\theta)=2J_{1}(x)\sin\theta+2J_{3}(x)\sin3\theta+\cdots\tag{4.7.17} \end{equation}
The above two series (4.7.16) and (4.7.17) are known as Jacobian series. Replacing \(\theta\) by \((\frac{\pi}{2}-\theta)\text{,}\) we have
\begin{equation} \cos(x\cos\theta)=J_{o}(x)-2 J_{2}(x)\cos2\theta +2 J_{4}(x)\cos4\theta-\cdots\tag{4.7.18} \end{equation}
and
\begin{equation} \sin(x\cos\theta)=2J_{1}(x)\cos\theta-2J_{3}(x)\cos3\theta+\cdots \tag{4.7.19} \end{equation}

Python Code:.

from scipy.special import j1
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
x = np.linspace(0, 20,100)
for n in range(4):
y = sp.special.jn(n,x)
plt.plot(x, y, label=r’$J_{}(x)$’.format(n))
plt.title("Bessel’s Function")
plt.xlabel("x")
plt.ylabel(r’$J_m(x)$’)
plt.legend(loc=’lower right’)
plt.show()

Subsubsection 4.7.1.2 Integral Represntation of \(J_{n}(x)\)

\begin{equation*} J_{n}(x)=\frac{1}{\pi}\int\limits_{0}^{\pi}\cos(n\theta-x\sin\theta)\,d\theta. \end{equation*}

Proof.

We know that
\begin{equation*} \cos(x\sin\theta) \end{equation*}
\begin{equation} =J_{o}(x)+2 J_{2}(x)\cos2\theta +2 J_{4}(x)\cos4\theta+\cdots\tag{4.7.20} \end{equation}
and
\begin{equation} \sin(x\cos\theta)=2J_{1}(x)\cos\theta-2J_{3}(x)\cos3\theta+\cdots \tag{4.7.21} \end{equation}
Multiplying equation (4.7.20) by \(\cos n\theta\) and equation (4.7.21) by \(\sin n\theta\) and integrating between limits 0 to \(\pi\text{,}\) we get -
\begin{equation*} \int\limits_{0}^{\pi}\cos(x\sin\theta)\cos n\theta\,d\theta= \int\limits_{0}^{\pi}\left[J_{o}(x)\cos n\theta+2 J_{2}(x)\cos2\theta\cos n\theta +\cdots\right]\,d\theta \end{equation*}
\begin{equation*} =J_{o} \int\limits_{0}^{\pi}\cos n\theta\,d\theta+2 J_{2}\int\limits_{0}^{\pi}\cos2\theta\cos n\theta\,d\theta+\cdots \end{equation*}
\begin{equation} \begin{cases} = 0, \text{if n is odd,}\\ = \pi J_{n}, \text{if n is even,} \end{cases}\tag{4.7.22} \end{equation}
Again,
\begin{equation*} \int\limits_{0}^{\pi}\sin(x\sin\theta)\sin n\theta\,d\theta \end{equation*}
\begin{equation*} =2J_{1} \int\limits_{0}^{\pi}\sin n\theta\,d\theta+2 J_{3}\int\limits_{0}^{\pi}\sin3\theta\sin n\theta\,d\theta+\cdots \end{equation*}
\begin{equation} \begin{cases} = 0, \text{if n is even,}\\ = \pi J_{n}, \text{if n is odd,} \end{cases}\tag{4.7.23} \end{equation}
Adding equations (4.7.22) and (4.7.23), we get -
\begin{equation*} J_{n}(x) =\frac{1}{\pi} \int\limits_{0}^{\pi}\{\cos(x\sin\theta)\cos n\theta +\sin(x\sin\theta)\sin n\theta\} \,d\theta \end{equation*}
\begin{equation} =\frac{1}{\pi} \int\limits_{0}^{\pi}\cos(n\theta-x\sin\theta)\,d\theta,\tag{4.7.24} \end{equation}
where \(n\) is any integer.
 1 
The Kronecker delta
\begin{equation*} \int\limits_{0}^{\pi}\cos m\theta\cos n\theta\,d\theta =\frac{\pi}{2}\delta_{m,n},\quad \delta_{m,n} =0 \end{equation*}
for \(m \neq n\text{;}\)

Subsubsection 4.7.1.3 Recurrence Relations for \(J_{n}(x)\)

  1. \begin{equation*} xJ'_{n}=n J_{n} -xJ_{n+1} \end{equation*}

    Proof.

    we know that
    \begin{equation} J_{n}(x)=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r}\tag{4.7.25} \end{equation}
    Differentiating with respect to \(x\text{,}\) we get -
    \begin{equation*} J'_{n}=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}(n+2r)}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r-1}\cdot\frac{1}{2} \end{equation*}
    or,
    \begin{equation} xJ'_{n}=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}(n+2r)}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r}\tag{4.7.26} \end{equation}
    or,
    \begin{equation*} xJ'_{n}=n\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r}+\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}2r}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r} \end{equation*}
    \begin{equation*} =nJ_{n}+x\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}2r}{2\cdot r!(r-1)!(n+r)!}\left(\frac{x}{2}\right)^{n+2r-1} \end{equation*}
    \begin{equation*} =nJ_{n}+x\sum\limits_{r=1}^{\infty}\frac{(-1)^{r}}{(r-1)!(n+r)!}\left(\frac{x}{2}\right)^{n+2r-1} \end{equation*}
    To change limits put \(r-1=s\text{,}\) so that
    \begin{equation*} xJ'_{n}=nJ_{n}+x\sum\limits_{s=0}^{\infty}\frac{(-1)^{s+1}}{s!(n+s+1)!}\left(\frac{x}{2}\right)^{n+2s+1} \end{equation*}
    \begin{equation*} \therefore \quad xJ'_{n}=nJ_{n}-xJ_{n+1} \end{equation*}
  2. \begin{equation*} xJ'_{n}=-n J_{n}+xJ_{n-1}. \end{equation*}

    Proof.

    From equation (4.7.25) of relation 1, we have
    \begin{equation*} xJ'_{n}= \sum\limits_{r=0}^{\infty}\frac{(-1)^{r}(n+2r)}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r} \end{equation*}
    \begin{equation*} =\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}[(2n+2r)-n]}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r} \end{equation*}
    \begin{equation*} =\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}(2n+2r)}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r}-n\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2r} \end{equation*}
    \begin{equation*} =\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}\cdot 2}{r!(n+r-1)!}\left(\frac{x}{2}\right)^{n+2r}-nJ_{n} \end{equation*}
    \begin{equation*} =x\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!\{(n-1)+r\}!}\left(\frac{x}{2}\right)^{(n-1)+2r}-nJ_{n} \end{equation*}
    \begin{equation*} =xJ_{n-1}-nJ_{n}. \end{equation*}
  3. \begin{equation*} 2J'_{n} =J_{n-1}-J_{n+1} \end{equation*}

    Proof.

    We know that
    \begin{equation*} xJ'_{n}=nJ_{n}-xJ_{n+1} \end{equation*}
    [from relation 1.]
    \begin{equation*} xJ'_{n}=-nJ_{n}+xJ_{n-1} \end{equation*}
    [from relation 2.] Adding these, we get -
    \begin{equation*} 2xJ'_{n}= -xJ_{n+1}+xJ_{n-1} \end{equation*}
    or,
    \begin{equation*} 2J'_{n} =J_{n-1}-J_{n+1} \end{equation*}
  4. \begin{equation*} 2nJ_{n}=x(J_{n-1} +J_{n+1}) \end{equation*}

    Proof.

    We know that -
    \begin{equation*} xJ'_{n}=nJ_{n}-xJ_{n+1} \end{equation*}
    [from relation 1.]
    \begin{equation*} xJ'_{n}=-nJ_{n}+xJ_{n-1} \end{equation*}
    [from relation 2.] Subtracting these, we get -
    \begin{equation*} 0= 2nJ_{n}-xJ_{n+1}-xJ_{n-1} \end{equation*}
    or,
    \begin{equation*} 2nJ_{n} =x(J_{n-1}+J_{n+1}) \end{equation*}
  5. \begin{equation*} \frac{\,d}{\,dx}\left(x^{-n}J_{n}\right)=-x^{-n}J_{n+1} \end{equation*}

    Proof.

    We know that
    \begin{equation*} xJ'_{n}=nJ_{n}-xJ_{n+1} \end{equation*}
    [from relation 1.] Multiplying by \(x^{-n-1}\text{,}\) we get -
    \begin{equation*} x^{-n}J'_{n}= nx^{-n-1}J_{n}-x^{-n}J_{n+1} \end{equation*}
    or,
    \begin{equation*} x^{-n}J'_{n}-nx^{-n-1}J_{n}=-x^{-n}J_{n+1} \end{equation*}
    or,
    \begin{equation*} \frac{\,d}{\,dx}\left(x^{-n}J_{n}\right)-x^{-n}J_{n+1} \end{equation*}
  6. \begin{equation*} \frac{\,d}{\,dx}\left(x^{n}J_{n}\right)=x^{n}J_{n+1} \end{equation*}

    Proof.

    We know that
    \begin{equation*} xJ'_{n}=-nJ_{n}+xJ_{n-1} \end{equation*}
    [from relation 2.] Multiplying by \(x^{n-1}\text{,}\) we get -
    \begin{equation*} x^{n}J'_{n}= -nx^{n-1}J_{n}+x^{n}J_{n-1} \end{equation*}
    or,
    \begin{equation*} x^{n}J'_{n}+nx^{-n-1}J_{n}=x^{n}J_{n-1} \end{equation*}
    or,
    \begin{equation*} \frac{\,d}{\,dx}\left(x^{n}J_{n}\right)=x^{n}J_{n-1} \end{equation*}

Subsubsection 4.7.1.4 Orthogonality of Bessel’s Functions

\begin{equation*} \int\limits_{0}^{1}xJ_{n}(\alpha x)\cdot J_{n}(\beta x) \,dx =0 \end{equation*}
Where \(\alpha\) and \(\beta\) are the roots of \(J_{n}(x)=0\text{.}\) Provided \(\alpha \neq \beta \text{.}\)

Proof.

We know that the Bessel’s equation
\begin{equation} t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{\,dy}{\,dt}+(t^{2}-n^{2})y=0 \tag{4.7.27} \end{equation}
is satisfied by \(J_{n}(t)\text{.}\) Now put \(t=\alpha x \) and \(y=u= J_{n}(\alpha x)\) in equation (4.7.27), we have
\begin{equation*} \frac{\,dt}{\,dx}=\alpha, \end{equation*}
\begin{equation*} \frac{\,dy}{\,dt}=\frac{\,du}{\,dt} = \frac{\,du}{\,dx}\cdot\frac{\,dx}{\,dt}=\frac{1}{\alpha}\frac{\,du}{\,dx} \end{equation*}
and
\begin{equation*} \frac{d^{2}y}{dt^{2}}=\frac{\,d}{\,dt}\left(\frac{\,dy}{\,dt}\right)=\frac{1}{\alpha}\frac{d}{dx}\left(\frac{1}{\alpha}\frac{\,du}{\,dx}\right) \end{equation*}
\begin{equation*} =\frac{1}{\alpha^{2}}\frac{d^{2}u}{dx^{2}} \end{equation*}
and
\begin{equation*} \left[\because \quad \frac{d}{dt}= \frac{1}{\alpha}\frac{d}{dx}\right] \end{equation*}
Substituting these values in equation (4.7.27), we get -
\begin{equation} x^{2}\frac{d^{2}u}{dx^{2}}+x\frac{du}{dx}+(\alpha^{2}x^{2}-n^{2})u=0 \tag{4.7.28} \end{equation}
Similarly by putting \(t=\beta x\) and \(y=v=J_{n}(\beta x)\) in equation (4.7.27), we have
\begin{equation} x^{2}\frac{d^{2}v}{dx^{2}}+x\frac{dv}{dx}+(\beta^{2}x^{2}-n^{2})v=0 \tag{4.7.29} \end{equation}
Multiplying equation (4.7.28) by \(\frac{v}{x}\) and equation (4.7.29) by \(\frac{u}{x}\) and then subtracting, we get -
\begin{equation*} x\left[v\frac{d^{2}u}{dx^{2}}-u\frac{d^{2}v}{dx^{2}}\right]+\left[v\frac{du}{dx}-u\frac{dv}{dx}\right]+(\alpha^{2}-\beta^{2})uvx=0 \end{equation*}
or,
\begin{equation} \frac{d}{dx}\left[x\left(v\frac{du}{dx}-u\frac{dv}{dx}\right)\right]+(\alpha^{2}-\beta^{2})uvx=0\tag{4.7.30} \end{equation}
Integrating equation (4.7.30) w. r. t. ’x’ between the limits 0 to 1, we get -
\begin{equation*} \left[x\left(v\frac{du}{dx}-u\frac{dv}{dx}\right)\right]_{0}^{1}+(\alpha^{2}-\beta^{2})\int\limits_{0}^{1}uvx\,dx=0 \end{equation*}
\begin{equation} (\beta^{2}-\alpha^{2})\int\limits_{0}^{1}uvx\,dx =\left(v\frac{du}{dx}-u\frac{dv}{dx}\right)_{x=1}\tag{4.7.31} \end{equation}
putting the values of \(u=J_{n}(\alpha x)\text{,}\) \(\frac{du}{dx}=\alpha J'_{n}(\alpha x)\) and \(v= J_{n}(\beta x)\text{,}\) \(\frac{dv}{dx}=\beta J'_{n}(\beta x)\) in equation ,(4.7.31), we get -
\begin{equation*} (\beta^{2}-\alpha^{2})\int\limits_{0}^{1}x J_{n}(\alpha x)J_{n}(\beta x)\,dx \end{equation*}
\begin{equation*} =\left[J_{n}(\beta x)\alpha J'_{n}(\alpha x)-J_{n}(\alpha x)\beta J'_{n}(\beta x)\right]_{x=1} \end{equation*}
\begin{equation} =\alpha J'_{n}(\alpha) J_{n}(\beta)-\beta J'_{n}(\beta) J_{n}(\alpha) \tag{4.7.32} \end{equation}
since \(\alpha \) and \(\beta \) are the roots of \(J_{n}(x)=0 \text{,}\) we have - \(J_{n}(\alpha)=0\) and \(J_{n}(\beta)=0\text{,}\) putting these values in equation (4.7.32), we get -
\begin{equation*} (\beta^{2}-\alpha^{2})\int\limits_{0}^{1}x J_{n}(\alpha x)J_{n}(\beta x)\,dx=0 \end{equation*}
Hence,
\begin{equation*} \int\limits_{0}^{1}x J_{n}(\alpha x)J_{n}(\beta x)\,dx=0. \end{equation*}