Skip to main content

Subsection 6.3.3 Laplace Transform of \(t^{n}f(t)\)

If \(\mathscr{L}[f(t)] =F(s)\text{,}\) then
\begin{equation*} \mathscr{L}\left[t^{n}f(t)\right]=(-1)^{n}\frac{d^{n}}{\,ds^{n}}[F(s)]=(-1)F^{n}(s) \end{equation*}

Proof.

\begin{equation} \mathscr{L}[f(t)] =F(s)=\int\limits_{0}^{\infty}e^{-st}f(t)\,dt\tag{6.3.2} \end{equation}
Differentiating equation (6.3.2), w. r. t. ’s’, we get -
\begin{equation*} \frac{d}{\,ds}[F(s)] = \frac{d}{\,ds}\left[\int\limits_{0}^{\infty}e^{-st}f(t)\,dt\right] = \int\limits_{0}^{\infty}\frac{d}{\,ds}(e^{-st})f(t)\,dt \end{equation*}
\begin{equation*} = \int\limits_{0}^{\infty}(-t e^{-st})f(t)\,dt =\int\limits_{0}^{\infty}e^{-st}[-tf(t)]\,dt = L[-t f(t)] \end{equation*}
or,
\begin{equation*} L[tf(t)] = (-1)^{1}\frac{d}{\,ds}F(s) \end{equation*}
Similarly,
\begin{equation*} L[t^{2} f(t)] = (-1)^{2}\frac{d^{2}}{\,ds^{2}}F(s) \end{equation*}
or,
\begin{equation*} L[t^{3} f(t)] = (-1)^{3}\frac{d^{3}}{\,ds^{3}}[F(s)] \end{equation*}
\begin{equation*} \vdots \end{equation*}
\begin{equation*} \mathscr{L}[t^{n} f(t)] = (-1)^{n}\frac{d^{n}}{\,ds^{n}}[F(s)] \end{equation*}