Skip to main content

Section 7.2 Examples A

Example 7.2.1.

Find the solution of the wave equation
\begin{equation*} \frac{\partial^{2} y}{\partial t^{2}} = v^{2}\frac{\partial^{2} y}{\partial x^{2}} \end{equation*}
such that \(y=p_{o}\cos pt, (p_{o}\) is a constant) when \(x=1\) and \(y=0\) when \(x=0\text{.}\)
Solution.
The wave equation is
\begin{equation} \frac{\partial^{2} y}{\partial t^{2}} = v^{2}\frac{\partial^{2} y}{\partial x^{2}} \tag{7.2.1} \end{equation}
Let us assume its solution as
\begin{equation} y(x,t) = X(x) T(t) \tag{7.2.2} \end{equation}
so that
\begin{equation*} \frac{\partial y}{\partial t} =X\frac{\partial T}{\partial t} \end{equation*}
and
\begin{equation*} \frac{\partial^{2} y}{\partial t^{2}}=X\frac{\partial^{2} T}{\partial t^{2}} \end{equation*}
also
\begin{equation*} \frac{\partial y}{\partial x} =T\frac{\partial X}{\partial x} \end{equation*}
and
\begin{equation*} \frac{\partial^{2} y}{\partial x^{2}}=T\frac{\partial^{2} X}{\partial x^{2}} \end{equation*}
Substituting these values in eqn. (7.2.1)(i), we get -
\begin{equation*} X\frac{\partial^{2} T}{\partial t^{2}} = Tv^{2}\frac{\partial^{2} X}{\partial x^{2}} \end{equation*}
or,
\begin{equation*} \frac{1}{X}\frac{\partial^{2} X}{\partial x^{2}} =\frac{1}{ v^{2}T} \frac{\partial^{2} T}{\partial t^{2}} =-k^{2} \text{(say)} \end{equation*}
or, and
\begin{equation} \frac{\partial^{2} X}{\partial x^{2}}+k^{2}X = 0 \quad \text{and} \quad \frac{\partial^{2} T}{\partial t^{2}}+k^{2}v^{2}T = 0 \tag{7.2.3} \end{equation}
Now, auxiliary equations are - \(m^{2}+k^{2}=0\text{,}\) or,
\begin{equation*} m=\pm ik \end{equation*}
and \(m^{2}+k^{2}v^{2}=0\) or,
\begin{equation*} m=\pm ikv\text{.} \end{equation*}
\begin{equation} X=c_{1}\cos kx+c_{2}\sin kx \quad \text{and} \quad T=c_{3}\cos kvt+c_{4}\sin kvt \tag{7.2.4} \end{equation}
Thus
\begin{equation} y(x,t)=(c_{1}\cos kx+c_{2}\sin kx)(c_{3}\cos kvt+c_{4}\sin kvt)\tag{7.2.5} \end{equation}
[from eqn.(7.2.2)]. Put \(y=0\) when \(x=0\text{,}\) we have
\begin{equation*} 0=c_{1}(c_{3}\cos kvt+c_{4}\sin kvt) \Rightarrow c_{1} =0. \end{equation*}
Hence, eqn. (7.2.3)(iii) reduces to
\begin{equation*} y=c_{2}\sin kx(c_{3}\cos kvt+c_{4}\sin kvt) \end{equation*}
or,
\begin{equation} y=c_{2}c_{3}\cos kvt.\sin kx+c_{2}c_{4}\sin kvt.\sin kx\tag{7.2.6} \end{equation}
put \(y=p_{o}\cos pt\) when \(x=1\text{,}\)
\begin{equation*} \therefore \quad p_{o}\cos pt = c_{2}c_{3}\cos kvt.\sin kl+c_{2}c_{4}\sin kvt.\sin kl \end{equation*}
equating the coefficients of \(\sin\) and \(\cos\) on both sides, we get -
\begin{equation*} p_{o} =c_{2}c_{3}\sin kl \quad \Rightarrow c_{2}c_{3} = \frac{p_{o}}{\sin kl}, \end{equation*}
\begin{equation*} 0=c_{2}c_{4}\sin kl \quad \Rightarrow c_{2}c_{2}c_{4} =0, \end{equation*}
and
\begin{equation*} p=kv \quad \Rightarrow \frac{p}{v}=k \end{equation*}
Hence, eqn. (7.2.6) becomes -
\begin{equation*} y=\frac{p_{o}}{\sin kl}\cos pt.\sin \frac{p}{v}x = \frac{p_{o}}{\sin (\frac{p}{v})l}\cos pt.\sin (\frac{p}{v})x \end{equation*}

Example 7.2.2.

A string is stretched between two points (0,0) and (l,0) and then released at rest from the positions \(y=a\sin \frac{\pi x}{l}\text{.}\) Show that the displacement of any point at a distance \(x\) from one end at a time \(t\) is given by
\begin{equation*} y(x,t) = a\sin (\frac{\pi x}{l})\cos (\frac{\pi vt}{l}). \end{equation*}
Solution.
The vibration of string is given by
\begin{equation} \frac{\partial^{2} y}{\partial t^{2}} = v^{2}\frac{\partial^{2} y}{\partial x^{2}} \tag{7.2.7} \end{equation}
The boundary conditions are
\begin{equation} y(0,t) = 0=y(l,t), \tag{7.2.8} \end{equation}
the initial conditions are
\begin{equation} y(x,0) = a\sin \frac{\pi x}{l}, \tag{7.2.9} \end{equation}
and the initial transverse velocity of any point of the string at \(t=0\)is
\begin{equation} \left(\frac{\partial y}{\partial t}\right)_{t=0} = 0\tag{7.2.10} \end{equation}
Now, the solution of eqn. (7.2.7) is in the form
\begin{equation} y(x,t)=(c_{1}\cos kx+c_{2}\sin kx)(c_{3}\cos kvt+c_{4}\sin kkvt)\tag{7.2.11} \end{equation}
with the help of eqn. (7.2.8),
\begin{equation*} y(l,t)=0=c_{1}(c_{3}\cos kvt+c_{4}\sin kkvt) \quad \Rightarrow c_{1} =0 \end{equation*}
Hence,
\begin{equation} y(x,t)=c_{2}\sin kx(c_{3}\cos kvt+c_{4}\sin kvt) \tag{7.2.12} \end{equation}
also from eqn. (7.2.8), we have
\begin{equation*} y(l,t)=0=c_{2}\sin kl(c_{3}\cos kvt+c_{4}\sin kvt)\quad \Rightarrow c_{2}\sin kl =0 \end{equation*}
or,
\begin{equation*} \sin kl=0=\sin n\pi \end{equation*}
or,
\begin{equation*} kl=n\pi \end{equation*}
\begin{equation*} \therefore k=\frac{n\pi}{l}, \quad \text{where} \quad n=1,2,3,\cdots. \end{equation*}
Hence, eqn. (7.2.12) becomes
\begin{equation} y(x,t)=c_{2}\sin \frac{n\pi x}{l}(c_{3}\cos \frac{n\pi vt}{l}+c_{4}\sin \frac{n\pi vt}{l}) \tag{7.2.13} \end{equation}
Again, with the help of eqn. (7.2.10),
\begin{equation*} \left(\frac{\partial y}{\partial t}\right)_{t=0}=0 \end{equation*}
\begin{equation*} =c_{2}\sin \frac{n\pi x}{l}\left[c_{3}\times-\frac{n\pi v}{l}\sin \frac{n\pi vt}{l}+c_{4}\times\frac{n\pi v}{l}\cos \frac{n\pi vt}{l}\right]_{t=0} \end{equation*}
or,
\begin{equation*} 0=c_{2}\sin \frac{n\pi x}{l}\left[c_{4}.\frac{n\pi v}{l}\right] \end{equation*}
if \(c_{2} =0\text{,}\) eqn. (7.2.12) will lead to the trivial solution \(y(x,t)=0\text{.}\) Therefore, the only possibility is that the \(c_{4} =0\text{.}\) Thus eqn. (7.2.13) reduces to
\begin{equation} y(x,t)=c_{2}c_{3}\sin \frac{n\pi x}{l}\cos \frac{n\pi vt}{l}.\tag{7.2.14} \end{equation}
Finally, imposing the condition (7.2.9), we have
\begin{equation*} y(x,0) =a\sin \frac{\pi x}{l} = c_{2}c_{3}\sin \frac{n\pi x}{l} \Rightarrow c_{2}c_{3} = a\quad \text{and}\quad n=1. \end{equation*}
on putting the values of \(c_{2}c_{3}\) and \(n\) in eqn. (7.2.14), we get -
\begin{equation*} y(x,t) =a\sin \frac{\pi x}{l}\cos \frac{\pi vt}{l} \end{equation*}

Example 7.2.3.

A tightly stretched string with fixed end points \(x=0\) and \(x=1\) is initially in a position given by \(y=y_{o}\sin^{3}\left(\frac{\pi x}{l}\right)\text{.}\) If it is released from rest from this position, find the displacement \(y(x,t)\text{.}\)
Solution.
Let the equation of vibrating string is
\begin{equation} \frac{\partial^{2} y}{\partial t^{2}} = v^{2}\frac{\partial^{2} y}{\partial x^{2}} \tag{7.2.15} \end{equation}
here, the initial conditions are \(y(0,t)=0=y(l,t)\) and \(\left(\frac{\partial y}{\partial t}\right)_{t=0}=0\) and the boundary conditions are \(y=y_{o}\sin^{2}\left(\frac{\pi x}{l}\right)\text{.}\) The solution of eqn. (7.2.15) is of the form,
\begin{equation} y(x,t)=(c_{1}\cos kx+c_{2}\sin kx)(c_{3}\cos kvt+c_{4}\sin kvt) \tag{7.2.16} \end{equation}
Now,
\begin{equation*} y(0,t)=0=c_{1}(c_{3}\cos kvt+c_{4}\sin kvt) \quad \Rightarrow c_{1} =0. \end{equation*}
Hence, eqn. (7.2.16) becomes
\begin{equation} y=c_{2}\sin kx(c_{3}\cos kvt+c_{4}\sin kvt) \tag{7.2.17} \end{equation}
also,
\begin{equation*} y(l,t) = 0=c_{2}\sin kl(c_{3}\cos kvt+c_{4}\sin kvt) \end{equation*}
or,
\begin{equation*} \sin kl =0=\sin n\pi \end{equation*}
or,
\begin{equation*} kl=n\pi \quad \Rightarrow k=\frac{n\pi}{l}; \end{equation*}
where, \(n=1,2,3, \cdots.\) putting \(k\) in eqn. (7.2.17), we get -
\begin{equation} y=c_{2}\sin \frac{n\pi x}{l}\left(c_{3}\cos \frac{n\pi vt}{l}+c_{4}\sin \frac{n\pi vt}{l}\right)\tag{7.2.18} \end{equation}
Now,
\begin{equation*} \left(\frac{\partial y}{\partial t}\right)_{t=0}=0 \end{equation*}
\begin{equation*} = c_{2}\sin \frac{n\pi x}{l}\left[c_{3}(-\frac{n\pi v}{l})\sin \frac{n\pi vt}{l}+c_{4}(\frac{n\pi v}{l})\cos\frac{n\pi vt}{l}\right]_{t=0} \end{equation*}
or,
\begin{equation*} 0=c_{2}\sin\frac{n\pi x}{l}\left[c_{4}\cdot\frac{n\pi v}{l}\right] \quad \Rightarrow c_{4}=0. \end{equation*}
Now, eqn. (7.2.18) reduces to
\begin{equation*} y=c_{2}c_{3}\sin \frac{n\pi x}{l}\cos \frac{n\pi vt}{l} =b_{n}\sin \frac{n\pi x}{l}\cos \frac{n\pi vt}{l} \end{equation*}
\(\quad [\because b_{n}=c_{2}c_{3}].\)
\begin{equation} \therefore y=\sum\limits_{n=1}^{\infty}b_{n}\sin \frac{n\pi x}{l}\cos \frac{n\pi vt}{l} \tag{7.2.19} \end{equation}
But,
\begin{equation*} y(x,0) = y_{o}\sin^{3}\left(\frac{n\pi x}{l}\right) = \frac{y_{o}}{4}\left[3\sin \frac{\pi x}{l}-sin \frac{3\pi x}{l}\right] \end{equation*}
on putting \(t=0\) in eqn. (7.2.19), we have-
\begin{equation*} \sum\limits_{n=1}^{\infty}b_{n}\sin \frac{n\pi x}{l}=\frac{y_{o}}{4}\left[3\sin \frac{\pi x}{l}-sin \frac{3\pi x}{l}\right] \end{equation*}
or,
\begin{equation*} \left[b_{1}\sin \frac{\pi x}{l}+b_{2}\sin \frac{2\pi x}{l}+\cdots\right] = \frac{y_{o}}{4}\left[3\sin \frac{\pi x}{l}-sin \frac{3\pi x}{l}\right] \end{equation*}
equating the coefficients of \(\sin\) on both sides, we get -
\begin{equation*} b_{1}=\frac{3y_{o}}{4},\quad b_{3}=-\frac{y_{o}}{4},\quad \text{and}\quad b_{2}=b_{4}=b_{5}=b_{6}=\cdots =0. \end{equation*}
Hence, eqn. (7.2.19) becomes
\begin{equation*} y=\frac{y_{o}}{4}\left[3\sin \frac{\pi x}{l}\cos \frac{\pi vt}{l}-\sin \frac{3\pi x}{l}\cos \frac{3\pi vt}{l}\right] \end{equation*}

Example 7.2.4.

If a string of length \(l\) is plucked at a point aside from its end by a displacement \(h\) from the mean position, find the displacement of the string at any time \(t\text{?}\)
Solution.
Let us consider a string which is clamped at points A and B is pulled aside at C and then released suddenly, as shown in figure
. Then the equation of vibrating string is
\begin{equation} \frac{\partial^{2} y}{\partial x^{2}} = \frac{1}{v^{2}}\frac{\partial^{2} y}{\partial t^{2}} \tag{7.2.20} \end{equation}
Also, let \(CP = h, AC = d,\) and \(CB = (l - d)\text{,}\) therefore the displacement of particle between points A and P at time \(t=0\text{.}\)
\begin{equation*} \frac{y}{x}=\frac{h}{d} \end{equation*}
\begin{equation} \therefore y=\frac{hx}{d} \tag{7.2.21} \end{equation}
for the portion between points P and B at time \(t=0\text{,}\) we have,
\begin{equation} \frac{y}{l-x}=\frac{h}{l-d}\quad \therefore y=\frac{h(l-x)}{(l-d)} \tag{7.2.22} \end{equation}
Hence, the displacement of string at time \(t=0\) is given by
\begin{equation} f(x) =y(x,0) = \begin{cases} \frac{hx}{d}, & \text{for} \quad 0 \leq x\leq d\\ \frac{h(l-x)}{(l-d)}, & \text{for} \quad d \leq x\leq l \end{cases} \tag{7.2.23} \end{equation}
since the initial velocity of the string is zero, the solution of eqn. (7.2.20) is given by
\begin{equation} y(x,t) = \sum\limits_{n=1}^{\infty}b_{n}\cos \frac{n\pi vt}{l}\sin \frac{n\pi x}{l} \tag{7.2.24} \end{equation}
where,
\begin{equation*} b_{n}=\frac{2}{l}\int\limits_{0}^{l}f(x)\sin \frac{n\pi x}{l}\,dx \end{equation*}
\begin{equation*} = \frac{2}{l}\left[\int\limits_{0}^{d}\frac{hx}{d}\sin \frac{n\pi x}{l}\,dx +\int\limits_{d}^{l}\frac{h(l-x)}{(l-d)}\sin \frac{n\pi x}{l}\,dx\right] \end{equation*}
\begin{equation*} = \frac{2h}{l}\left[\int\limits_{0}^{d}\frac{x}{d}\sin \frac{n\pi x}{l}\,dx +\int\limits_{d}^{l}\frac{(l-x)}{(l-d)}\sin \frac{n\pi x}{l}\,dx\right] \end{equation*}
\begin{equation*} =\frac{2h}{l}\left[\frac{1}{d}\left\{x.\frac{\cos \frac{n\pi x}{l}}{-\frac{n\pi}{l}}-1.\frac{\sin \frac{n\pi x}{l}}{-\frac{n^{2}\pi^{2}}{l^{2}}}\right\}_{0}^{d} \right. \end{equation*}
\begin{equation*} \left. + \frac{1}{l-d}\left\{(l-x).\frac{\cos \frac{n\pi x}{l}}{-\frac{n\pi}{l}}-(-1).\frac{\sin \frac{n\pi x}{l}}{-\frac{n^{2}\pi^{2}}{l^{2}}}\right\}_{d}^{l}\right] \end{equation*}
\begin{equation*} =\frac{2h}{l}\left[-\frac{l}{n\pi}\cos \frac{n\pi d}{l}+\frac{l^{2}}{n^{2}\pi^{2}d}\sin \frac{n\pi d}{l}\right. \end{equation*}
\begin{equation*} \left. -\frac{l}{n\pi}\cos \frac{n\pi d}{l}+\frac{l^{2}}{n^{2}\pi^{2}(l-d)}\sin \frac{n\pi d}{l}\right] \end{equation*}
\begin{equation*} =\frac{2h}{l}\left[\frac{1}{d}+\frac{1}{(l-d)}\right]\frac{l^{2}}{n^{2}\pi^{2}}\sin \frac{n\pi d}{l} \end{equation*}
\begin{equation} = \frac{2hl^{2}}{n^{2}\pi^{2}d(l-d)}\sin \frac{n\pi d}{l} \tag{7.2.25} \end{equation}
Substituting \(b_{n}\) in eqn. (7.2.24), we get -
\begin{equation*} y= \sum\limits_{n=1}^{\infty}\frac{2hl^{2}}{n^{2}\pi^{2}d(l-d)}\sin \frac{n\pi d}{l}\cos \frac{n\pi vt}{l}\sin \frac{n\pi x}{l} \end{equation*}

2D wave equation.

Example 7.2.5.

Find the deflection \(u(x,y,t) \) of the square membrane with \(a=b=1\text{,}\) if the initial velocity is zero and the initial deflection is
\begin{equation*} f(x,y) = A\sin \pi x\sin 2\pi y. \end{equation*}
Solution.
. The deflection of the square membrane is given by the two-dimensional wave equation
\begin{equation} \frac{\partial^{2} u}{\partial t^{2}}=v^{2}\left[\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}\right] \tag{7.2.26} \end{equation}
The boundary conditions are given as
\begin{equation} \left.\begin{aligned} u(0,y,t) = 0=u(1,y,t)\\ u(x,0,t) = 0=u(x,1,t) \end{aligned}\right\} \tag{7.2.27} \end{equation}
as \(a=b=1\) is the sides of the membrane. The initial conditions are
\begin{equation} u(x,y,0) =f(x,y) = A\sin \pi x\sin 2\pi y \quad \text{and} \quad \left.\frac{\partial u}{\partial t}\right\vert_{t=0}=0 \tag{7.2.28} \end{equation}
Therefore the solution of eqn. (7.2.26) is given by
\begin{equation} u(x,y,t)=\sum\limits_{m=1}^{\infty}A_{mn}\cos\lambda_{mn}t\sin\frac{m\pi x}{1}\sin\frac{n\pi y}{1} \tag{7.2.29} \end{equation}
where
\begin{equation*} A_{mn}=\frac{4}{1\cdot 1}\int\limits_{x=0}^{1}\int\limits_{y=0}^{1}f(x,y)\sin\frac{m\pi x}{1}\sin\frac{n\pi y}{1}\,dx\,dy \end{equation*}
\begin{equation} =4\int\limits_{0}^{1}\int\limits_{0}^{1}A\sin \pi x\sin 2\pi y \sin m\pi x\sin n\pi y\,dx\,dy \tag{7.2.30} \end{equation}
on integration, we find that
\begin{equation*} A_{m1}=A_{m3}=A_{m4}=\cdots=0 \end{equation*}
but,
\begin{equation*} A_{m2} =4A\int\limits_{0}^{1}\int\limits_{0}^{1}A\sin \pi x\sin m\pi x\sin^{2} 2\pi y\,dx\,dy \end{equation*}
\begin{equation*} = 2A\int\limits_{0}^{1}\int\limits_{0}^{1}\sin \pi x\sin m\pi x(1-\cos4\pi y)\,dx\,dy \end{equation*}
\begin{equation*} =2A\int\limits_{0}^{1}\sin \pi x\sin m\pi x\left(y-\frac{1}{4\pi}\sin 4\pi y\right)_{0}^{1}\,dx \end{equation*}
\begin{equation*} = 2A \int\limits_{0}^{1}\sin \pi x\sin m\pi x\,dx \end{equation*}
on integration, we find that
\begin{equation*} A_{22}= A_{32}=A_{42}=\cdots=0 \end{equation*}
Also, we find
\begin{equation*} A_{12} =2A\int\limits_{0}^{1}\sin \pi x\sin \pi x\,dx = A\int\limits_{0}^{1}(1-\cos 2\pi x)\,dx \end{equation*}
\begin{equation*} = A\left(x-\frac{\sin 2\pi x}{2\pi}\right)_{0}^{1}=A. \end{equation*}
\begin{equation*} \therefore \quad u(x,y,t)= A_{12}\cos\lambda_{12}t\sin\pi x\sin 2\pi y \end{equation*}
\begin{equation*} =A\cos\sqrt{5}\pi t\sin\pi x\sin 2\pi t \end{equation*}
\begin{equation*} [ \because \quad \lambda_{12}^{2}=1^{2}\cdot k_{12}^{2}=\pi^{2}(1^{2}+2^{2}); \quad \therefore \quad \lambda_{12}=\pi \sqrt{5}]. \end{equation*}