We may have
\begin{equation*}
\int\limits_{0}^{\infty}e^{-x}\sum\limits_{m,n =0}^{\infty}L_{m}(x)L_{n}(x)\frac{s^{m}t^{n}}{m!n!}\,dx
\end{equation*}
\begin{equation*}
=(1-s)^{-1}(1-t)^{-1}\int\limits_{0}^{\infty}exp\left[-x\frac{(1-st)}{(1-s)(1-t)}\right]\,dx
\end{equation*}
\begin{equation*}
=(1-st)^{-1}=\sum\limits_{n}(st)^{n} \hspace{1cm} \left[\because \int\limits_{0}^{\infty}e^{-\alpha x}\,dx=\frac{1}{\alpha}\right]
\end{equation*}
put \(m=n\) and equate the coefficients of \((st)^{n}\) on both sides, we get -
\begin{equation*}
\int\limits_{0}^{\infty}e^{-x}[L_{n}(x)]^{2}\,dx =(n!)^{2}.
\end{equation*}
Alternative: In case of
\(r=n\) in eqn.
(4.11.8), we have
\begin{equation*}
L_{n}(x) =(-1)^{n}x^{n}
\end{equation*}
\begin{equation*}
\therefore \int\limits_{0}^{\infty}e^{-x}[L_{n}(x)]^{2}\,dx =(-1)^{n}\int\limits_{0}^{\infty}e^{-x}x^{n}L_{n}(x)\,dx
\end{equation*}
\begin{equation*}
=(-1)^{n}\int\limits_{0}^{\infty}e^{-x}x^{n}e^{x}\frac{d^{n}}{dx^{n}}(x^{n}e^{-x})\,dx
\end{equation*}
\begin{equation*}
=(-1)^{n}\int\limits_{0}^{\infty}x^{n}\frac{d^{n}}{dx^{n}}(x^{n}e^{-x})\,dx
\end{equation*}
Integrating by parts \(n\) times,
\begin{equation*}
=(-1)^{n}n!\int\limits_{0}^{\infty}\frac{d^{n-m}}{dx^{n-m}}(x^{n}e^{-x})\,dx = (-1)^{n}n!\int\limits_{0}^{\infty}x^{n}e^{-x}\,dx=(n!)^{2}.
\end{equation*}