Skip to main content

Subsection 6.1.8 Convolution Theorem

Convolution theorem is a mathematical operation widely used in communication physics. If \(F(s)\) and \(G(s)\) are Fourier transform of two functions \(f(x)\) and \(g(x)\) respectively, then Fourier transform of the convolution (coiled) of \(f(x)\) and \(g(x)\) is the product of their Fourier transforms, i.e.
\begin{equation*} \mathscr{F} \{f(x) * g(x)\} = F(s).G(s) \end{equation*}
where the astric \(($*$)\) denotes convolution (not a complex conjugate).

Proof.

The convolution means
\begin{equation*} f(x)*g(x) = \int\limits_{-\infty}^{\infty} f(\xi)g(x-\xi)\,d\xi = \int\limits_{-\infty}^{\infty} f(x-\xi)g(\xi)\,d\xi \end{equation*}
derive from the Dirac Delta function
\begin{equation*} f(\alpha) = \int\limits_{-\infty}^{\infty}\delta(\alpha-x)f(x)\,dx. \end{equation*}
\begin{equation*} \mathscr{F} \{f(x) * g(x)\} = \int\limits_{-\infty}^{\infty}e^{-isx}\{f(x) * g(x)\}\,dx \end{equation*}
\begin{equation*} =\int\limits_{x=-\infty}^{\infty}\frac{1}{2\pi}\left[ \int\limits_{\xi=-\infty}^{\infty}f(\xi)g(x-\xi)\,d\xi\right] e^{-isx}\,dx \end{equation*}
(on changing the order of integration)
\begin{equation*} =\int\limits_{\xi=-\infty}^{\infty}\left[f(\xi)\int\limits_{x=-\infty}^{\infty}g(x-\xi) e^{-isx}\,dx\right]\,d\xi \end{equation*}
\begin{equation*} =\int\limits_{\xi=-\infty}^{\infty}f(\xi)\left[\int\limits_{x=-\infty}^{\infty}g(x-\xi) e^{-is(x-\xi)}\,d(x-\xi)\right]e^{-is\xi}\,d\xi; \quad x-\xi=\lambda \end{equation*}
\begin{equation*} =\int\limits_{\xi=-\infty}^{\infty} f(\xi)e^{-is\xi}\,d\xi\left[ \int\limits_{\lambda=-\infty}^{\infty}g(\lambda)e^{-is\lambda}\,d\lambda\right] \end{equation*}
\begin{equation*} =\int\limits_{\xi=-\infty}^{\infty} f(\xi)e^{-is\xi}\,d\xi\cdot\mathscr{F}\{g(\lambda)\} \end{equation*}
\begin{equation*} =\mathscr{F}\{f(\xi\}\cdot \mathscr{F}\{g(\lambda)\} = F(s).G(s). \end{equation*}
If \(x\) is time and \(s\) is frequency then convolution of two signal in time domain corresponds to the multiplication of their Fourier transform in frequency domain.