We have
\begin{equation*}
e^{-xt/(1-t)}=1-\frac{xt}{1-t}+\frac{1}{2!}\left(\frac{xt}{1-t}\right)^{2}+\cdots
\end{equation*}
\begin{equation}
=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}x^{r}t^{r}}{(1-t)^{r}r!}\tag{4.11.9}
\end{equation}
or,
\begin{equation*}
\frac{e^{-xt/(1-t)}}{1-t}=\sum\limits_{r=0}^{\infty}(-1)^{r}\frac{t^{r}x^{r}}{r!(1-t)^{r+1}}
\end{equation*}
\begin{equation*}
=\sum\limits_{r=0}^{\infty}(-1)^{r}\frac{x^{r}t^{r}}{r!}(1-t)^{-(r+1)}
\end{equation*}
\begin{equation*}
=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}}{r!}x^{r}t^{r}\left[1+(r+1)t+\frac{(r+1)(r+2)}{2!}t^{2}\right.
\end{equation*}
\begin{equation*}
\left.+\cdots+\frac{(r+1)(r+2)\cdots(r+s)}{s!}t^{s}+\cdots\right]
\end{equation*}
\begin{equation*}
=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}x^{r}t^{r}}{r!}\sum\limits_{s=0}^{\infty}\frac{(r+1)(r+2)\cdots(r+s)}{s!}t^{s}
\end{equation*}
\begin{equation}
=\sum\limits_{r=0}^{\infty}\frac{(-1)^{r}x^{r}t^{r}}{r!}\sum\limits_{s=0}^{\infty}\frac{(r+s)!}{r!s!}t^{s}\tag{4.11.10}
\end{equation}
on putting \(r+s=n\text{,}\) the coefficient of \(t^{n}\) for fixed value of \(r\) is \(\frac{(-1)^{r}n!}{(r!)^{2}(n-r)!}x^{r}\text{,}\) as \(n-r=s\) and \(s \geq 0\text{.}\) Thus \(n-r \geq 0\) or, \(r \leq n\text{.}\) Hence the coefficient of \(t^{n}\) on RHS of equation (4.11.10) is
\begin{equation*}
\sum\limits_{r=0}^{n}\frac{(-1)^{r}n!}{(r!)^{2}(n-r)!}x^{r} =\frac{L_{n}(x)}{n!}
\end{equation*}
Therefore,
\begin{equation*}
\frac{e^{-xt/(1-t)}}{1-t}=\sum\limits_{r=0}^{n}\frac{L_{n}(x)}{n!}t^{n}
\end{equation*}
is the generating function of \(L_{n}(x)\text{.}\)