The characteristic equation is \(|A-\lambda I| = 0\text{,}\) i.e.,
\begin{equation*}
\begin{vmatrix}
-\lambda & 1 & 1 \\1 & -\lambda & 1 \\ 1 & 1 & -\lambda
\end{vmatrix} = 0
\end{equation*}
\begin{align*}
or, -\lambda(\lambda^{2}-1) +1(+\lambda)+1(1+\lambda)\amp =0 \\
or, -\lambda(\lambda+1)(\lambda -1)+2(\lambda+1)\amp =0 \\
or, (\lambda+1)[-\lambda(\lambda -1)+2] \amp =0 \\
or, (\lambda+1)[-\lambda^{2}+\lambda +2] \amp =0
\end{align*}
\begin{equation*}
or, \lambda =-1,-1,2
\end{equation*}
The eigen vector corresponding to eigen value \(\lambda_{1}=-1\) is given by \((A-\lambda I)X = 0\text{.}\)
\begin{equation*}
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix} = \begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
\end{equation*}
\begin{align*}
or, x_{1} + x_{2}+ x_{3} \amp =0\\
or, x_{1} + x_{2} + x_{3}\amp =0\\
and, x_{1} + x_{2} + x_{3} \amp =0
\end{align*}
on solving these we get -
\begin{equation*}
\frac{x_{1}}{0} = \frac{x_{2}}{0} = \frac{x_{3}}{0} = k_{1} \quad \text{(say)}
\end{equation*}
\begin{equation*}
\therefore \quad X_{1} = \begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix} = \begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
\end{equation*}
The eigen vector corresponding to eigen value \(\lambda_{2}=2\) is given by
\begin{equation*}
\begin{bmatrix}
-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2
\end{bmatrix}
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix} = \begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
\end{equation*}
\begin{align*}
or, -2x_{1} + x_{2}+ x_{3}\amp =0\\
or, x_{1} -2x_{2} + x_{3} \amp =0 \\
or, x_{1} + x_{2}-2x_{3}\amp =0
\end{align*}
on solving these we get -
\begin{equation*}
\frac{x_{1}}{4-1} = \frac{x_{2}}{1+2} = \frac{x_{3}}{1+2} = k_{2} \quad \text{(say)}
\end{equation*}
or,
\begin{equation*}
\frac{x_{1}}{3} = \frac{x_{2}}{3} = \frac{x_{3}}{3} = k_{2}
\end{equation*}
or,
\begin{equation*}
X_{1}=\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix} = \begin{bmatrix}
3k_{2} \\ 3k_{2} \\ 3k_{2}
\end{bmatrix} = 3k_{2} \begin{bmatrix}
1 \\ 1 \\ 1
\end{bmatrix}
\end{equation*}
where \(k_{2}\) may have any value. For \(3k_{2}=1\text{,}\) We have \(X_{2}=(1,1,1)\text{.}\) Since the matrix is Hermitian, we have -
\begin{equation*}
X \cdot X^{\dagger} = \begin{bmatrix}
1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
1\\1\\1
\end{bmatrix} = [1+1+1] = 3
\end{equation*}
\(\therefore\) Normalized eigen vector corresponding to \(\lambda_{2}=2\) is
\begin{equation*}
\hat{X}= \frac{X}{\parallel X \parallel} = \frac{1}{\sqrt{3}} \begin{bmatrix}
1\\1\\1
\end{bmatrix}.
\end{equation*}