Skip to main content

Subsection 6.3.5 Laplace Transform of \(\frac{1}{t}f(t)\)

If \(\mathscr{L}[f(t)] =F(s)\text{,}\) then
\begin{equation*} \mathscr{L}\left[\frac{1}{t}f(t)\right] =\int\limits_{s}^{\infty}F(s)\,ds. \end{equation*}

Proof.

\begin{equation} \mathscr{L}[f(t)] =F(s) = \int\limits_{0}^{\infty}e^{-st}f(t)\,dt\tag{6.3.3} \end{equation}
Integrating equation (6.3.3) w.r.t. ’s’, we get -
\begin{equation*} \int\limits_{s}^{\infty}F(s)\,ds = \int\limits_{s}^{\infty}\left[\int\limits_{0}^{\infty} e^{-st}f(t)\,dt\right]\,ds \end{equation*}
\begin{equation*} = \int\limits_{0}^{\infty} \left[\int\limits_{s}^{\infty} e^{-st}f(t)\,dt\right]\,ds = \int\limits_{0}^{\infty}\left[\frac{ e^{-st}f(t)}{-t}\right]_{s}^{\infty} \,dt \end{equation*}
\begin{equation*} =\int\limits_{0}^{\infty}\frac{f(t)}{-t}\left[e^{-st}\right]_{s}^{\infty}\,dt = \int\limits_{0}^{\infty}\frac{f(t)}{-t}\left[0-e^{-st}\right]\,dt \end{equation*}
\begin{equation*} = \int\limits_{0}^{\infty}e^{-st}\{\frac{1}{t}f(t)\}\,dt = L\left[\frac{1}{t}f(t)\right] \end{equation*}
i.e.,
\begin{equation*} \mathscr{L}\left[\frac{1}{t}f(t)\right] = \int\limits_{s}^{\infty}F(s)\,ds \end{equation*}