Skip to main content

Section 4.4 Examples B

Example 4.4.1.

Solve
\begin{equation*} 2x^{2}y'' -xy' +(x^{2}+1)y =0. \end{equation*}
Solution.
\begin{equation} 2x^{2}y'' -xy' +(x^{2}+1)y =0 \tag{4.4.1} \end{equation}
This equation has a regular singularity at \(x=0\text{.}\) Hence we assume the solution in the form
\begin{equation} y = \sum\limits_{\lambda =0}^{\infty}a_{\lambda}x^{\lambda+k} \tag{4.4.2} \end{equation}
or,
\begin{equation*} y' = \sum\limits_{\lambda =0}^{\infty}a_{\lambda}(\lambda+k)x^{\lambda+k-1} \end{equation*}
and
\begin{equation*} y'' = \sum\limits_{\lambda =0}^{\infty}a_{\lambda}(\lambda+k)(\lambda+k-1)x^{\lambda+k-2} \end{equation*}
Substituting these values in eqn. (4.4.1), we get -
\begin{equation*} 2x^{2}\sum\limits_{\lambda =0}^{\infty}a_{\lambda}(\lambda+k)(\lambda+k-1)x^{\lambda+k-2}-x\sum\limits_{\lambda =0}^{\infty}a_{\lambda}(\lambda+k)x^{\lambda+k-1} \end{equation*}
\begin{equation*} +(x^{2}+1)\sum\limits_{\lambda =0}^{\infty}a_{\lambda}x^{\lambda+k} =0 \end{equation*}
or,
\begin{equation*} \sum\limits_{\lambda =0}^{\infty}a_{\lambda}\left[2(\lambda+k)(\lambda+k-1)x^{\lambda+k-1}-(\lambda+k)x^{\lambda+k}+x^{\lambda+k}\right] \end{equation*}
\begin{equation*} +\sum\limits_{\lambda =0}^{\infty}a_{\lambda}x^{\lambda+k+2} =0 \end{equation*}
or,
\begin{equation*} \sum\limits_{\lambda =0}^{\infty}a_{\lambda}\left[(\lambda+k)\{2(\lambda+k-1)-1\}+1\right]x^{\lambda+k} \end{equation*}
\begin{equation*} +\sum\limits_{\lambda =0}^{\infty}a_{\lambda}x^{\lambda+k+2} =0 \end{equation*}
or,
\begin{equation} \sum\limits_{\lambda =0}^{\infty}a_{\lambda}\left[(\lambda+k)(2\lambda+2k-3)+1\right]x^{\lambda+k}+\sum\limits_{\lambda =0}^{\infty}a_{\lambda}x^{\lambda+k+2} =0 \tag{4.4.3} \end{equation}
Equating the coefficient of lowest power of \(x\) (i.e., the coefficient of \(x^{k}\)) to zero. We get the indicial equation.
\begin{equation*} a_{o}\left[k(2k-3)+1\right] =0 \end{equation*}
or,
\begin{equation*} 2k^{2}-3k+1 =0 \quad \text{Since,}\quad a_{o}\neq 0. \end{equation*}
or,
\begin{equation*} 2k^{2}-2k-k+1 =0 \end{equation*}
or,
\begin{equation*} (2k-1)(k-1)=0 \hspace{1cm} \Rightarrow k=1,\frac{1}{2} \end{equation*}
and the difference of roots is not an integer.
Equating the coefficient of next higher power of \(x\) (i.e., \(x^{k+1}\)) to zero, we get
\begin{equation*} a_{1}\left[(k+1)(2k+2-3)+1\right] =0 \end{equation*}
or,
\begin{equation*} a_{1}\left[(k+1)(2k-1)+1\right] =0 \end{equation*}
or,
\begin{equation*} a_{1}\left[2k^{2}-k+2k-1+1\right] =0 \end{equation*}
or,
\begin{equation*} a_{1}\left[2k^{2}+k\right] =0 \end{equation*}
or,
\begin{equation*} a_{1}\left[2k+1\right]k =0 \end{equation*}
for \(k=1\text{,}\)
\begin{equation*} (2k+1)k \neq =0, \quad \text{hence,} \quad a_{1}=0 \end{equation*}
for \(k=\frac{1}{2}\)
\begin{equation*} (2k+1)k \neq =0, \quad \text{hence,} \quad a_{1}=0 \end{equation*}
i.e., the series solution does not contain the coefficient \(a_{1}\text{.}\)
Again, equating the coefficient of general power of \(x\) (i.e., \(x^{\lambda+k+2}\)) to zero, we get the recursion relation.
\begin{equation*} \sum a_{\lambda+2}\left[(\lambda+k+2)\{2k+2(\lambda+2)-3\}+1\right]+\sum a_{\lambda}=0 \end{equation*}
\begin{equation} \therefore a_{\lambda+2} =-\frac{a_{\lambda}}{\left[(k+\lambda+2)\{2k+2\lambda+1\}+1\right]} \tag{4.4.4} \end{equation}
for \(k=1\)
\begin{equation*} a_{\lambda+2} =-\frac{a_{\lambda}}{\left[(\lambda+3)(2\lambda+3)+1\right]} \end{equation*}
[from equation (4.4.4)] or,
\begin{equation*} a_{2}=-\frac{a_{o}}{(3\cdot 3+1)}=-\frac{a_{o}}{10};\quad a_{4}=-\frac{a_{2}}{(5\cdot 7+1)}=\frac{a_{o}}{36\cdot 10}=\frac{a_{o}}{360}; \end{equation*}
and so on. Or,
\begin{equation*} y_{1}=x\left[a_{o}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}+\cdots\right] \end{equation*}
\begin{equation} \therefore y_{1}= a_{o}x\left[1-\frac{x^{2}}{10}+\frac{x^{4}}{360}-\cdots\right]\tag{4.4.5} \end{equation}
for \(k=\frac{1}{2}\text{,}\)
\begin{equation*} a_{\lambda+2} =-\frac{a_{\lambda}}{\left[(\lambda+\frac{5}{2})(2\lambda+2)+1\right]} \end{equation*}
[from eqn. (4.4.4)] or,
\begin{equation*} a_{2}=-\frac{a_{o}}{(\frac{5}{2}\cdot 2+1)}=-\frac{a_{o}}{6}; \end{equation*}
\begin{equation*} a_{4}=-\frac{a_{2}}{(\frac{9}{2}\cdot 6+1)}=\frac{a_{o}}{6\cdot 28}=\frac{a_{o}}{168}; \end{equation*}
and so on. From eqn. (4.4.2), we have
\begin{equation*} y_{2}=x^{\frac{1}{2}}\left[a_{o}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}+\cdots\right] \end{equation*}
\begin{equation} \therefore, y_{2}= a_{o}x^{\frac{1}{2}}\left[1-\frac{x^{2}}{6}+\frac{x^{4}}{168}-\cdots\right] \tag{4.4.6} \end{equation}
The complete solution of eqn. (4.4.1) is
\begin{equation*} y=C_{1}y_{1}+C_{2}y_{2} \end{equation*}
\begin{equation*} =Ax\left[1-\frac{x^{2}}{10}+\frac{x^{4}}{360}-\cdots\right]+Bx^{\frac{1}{2}}\left[1-\frac{x^{2}}{6}+\frac{x^{4}}{168}-\cdots\right] \end{equation*}

Example 4.4.2.

Solve
\begin{equation*} xy''+y' +x^{2}y=0 \end{equation*}
Solution.
\begin{equation} xy''+y'+x^{2}y=0 \tag{4.4.7} \end{equation}
The equation has \(x=0\) is a regular singular point. Let
\begin{equation} y=\sum\limits_{\lambda=0}^{\infty}a_{\lambda}x^{\lambda+k}\tag{4.4.8} \end{equation}
be the solution of eqn. (4.4.7). Since eqn. (4.4.8) satisfies the eqn. (4.4.7) we have
\begin{equation*} x\sum a_{\lambda}(\lambda+k)(\lambda+k-1)x^{\lambda+k-2} \end{equation*}
\begin{equation*} +\sum a_{\lambda}(\lambda+k)x^{\lambda+k-1} +x^{2}\sum a_{\lambda}x^{\lambda+k} =0 \end{equation*}
or,
\begin{equation*} \sum a_{\lambda}(\lambda+k)(\lambda+k-1)x^{\lambda+k-1}+\sum a_{\lambda}(\lambda+k)x^{\lambda+k-1}+\sum a_{\lambda}x^{\lambda+k+2} =0 \end{equation*}
or,
\begin{equation*} \sum a_{\lambda}\left[(\lambda+k)(\lambda+k-1) +(\lambda+k)\right]x^{\lambda+k-1}+\sum a_{\lambda}x^{\lambda+k+2} =0 \end{equation*}
or,
\begin{equation} \sum a_{\lambda}(\lambda+k)^{2}x^{\lambda+k-1} +\sum a_{\lambda}x^{\lambda+k+2} =0 \tag{4.4.9} \end{equation}
Equating the coefficient of lowest power of \(x\) (i.e., \(x^{k-1} \)) to zero, we get -
\begin{equation*} a_{o}(k^{2})=0 \hspace{1cm} \because \quad a_{o}\neq 0 \quad \Rightarrow k=0,0. \end{equation*}
Equating the coefficient of \(x^{k}\) to zero, we get -
\begin{equation*} a_{1}(k+1)^{2}=0 \end{equation*}
for \(k=0,\)
\begin{equation*} (k+1)^{2} \neq 0,\quad \end{equation*}
hence, \(a_{1}= 0.\) Again, equating the coefficient of \(x^{k+1}\) to zero, we get -
\begin{equation*} a_{2}(k+2)^{2}=0 \quad \Rightarrow a_{2}= 0. \end{equation*}
[\(\because \quad (k+2)^{2} \neq 0\) at \(k=0\text{.}\)] Equating the coefficient of \(x^{\lambda+k+2}\) to zero, we get -
\begin{equation*} a_{\lambda+3}(\lambda+k+3)^{2}+a_{\lambda}=0 \end{equation*}
or,
\begin{equation} a_{\lambda+3} =-\frac{a_{\lambda}}{(\lambda+k+3)^{2}} \tag{4.4.10} \end{equation}
for \(\lambda =0,\)
\begin{equation*} a_{3}=-\frac{a_{o}}{(m+3)^{2}}, \end{equation*}
for \(\lambda =1,\)
\begin{equation*} a_{4}=-\frac{a_{1}}{(m+4)^{2}}=0, \end{equation*}
also, \(a_{7}=0,\quad a_{10}=0,\) for \(\lambda =2,\)
\begin{equation*} a_{5}=-\frac{a_{2}}{(m+5)^{2}}=0, \end{equation*}
also, \(a_{8}=0,\quad a_{11}=0,\) for \(\lambda =3,\)
\begin{equation*} a_{6}=-\frac{a_{3}}{(m+6)^{2}}=\frac{a_{o}}{(m+3)^{2}(m+6)^{2}}, \end{equation*}
similarly,
\begin{equation*} a_{9}=-\frac{a_{6}}{(m+9)^{2}}=-\frac{a_{o}}{(m+3)^{2}(m+6)^{2}(m+9)^{2}}, \end{equation*}
and so on.
Hence, from eqn. (4.4.8), we get -
\begin{equation*} y=a_{o}x^{m}\left[1-\frac{x^{3}}{(m+3)^{2}}+\frac{x^{6}}{(m+3)^{2}(m+6)^{2}} \right. \end{equation*}
\begin{equation} \left. -\frac{x^{9}}{(m+3)^{2}(m+6)^{2}(m+9)^{2}}+\cdots\right] \tag{4.4.11} \end{equation}
To get the first solution, let \(m=0\) in eqn. (4.4.11),
\begin{equation} y_{1}=a_{o}\left[1-\frac{x^{3}}{3^{2}}+\frac{x^{6}}{3^{2}\cdot 6^{2}}-\frac{x^{9}}{3^{2}\cdot 6^{2}\cdot 9^{2}}+\cdots\right]\tag{4.4.12} \end{equation}
To get the second independent solution, differentiate eqn. (4.4.11) w.r.t. ’m’, we get -
 1 
Let
\begin{equation*} \theta =a_{o}x^{m} \end{equation*}
then.
\begin{equation*} \log\theta = \log a_{o}+m\log x \end{equation*}
or,
\begin{equation*} \frac{1}{\theta}\partial\theta =0+\log x\partial m \end{equation*}
\begin{equation*} \therefore \frac{\partial\theta}{\partial m } = \theta\log x. \end{equation*}
\begin{equation*} \frac{\partial y}{\partial m} =a_{o}x^{m}\log x\left[1-\frac{x^{3}}{(m+3)^{2}}+\frac{x^{6}}{(m+3)^{2}(m+6)^{2}}-\cdots\right] \end{equation*}
\begin{equation*} +a_{o}x^{m}\left[\frac{2x^{3}}{(m+3)^{3}}-\frac{2x^{6}}{(m+3)^{3}(m+6)^{2}}-\frac{2x^{6}}{(m+3)^{2}(m+6)^{3}}+\cdots\right] \end{equation*}
\begin{equation*} \therefore y_{2}=\left(\frac{\partial y}{\partial m}\right)_{m=0}= a_{o}\log x \left[1-\frac{x^{3}}{3^{2}}+\frac{x^{6}}{3^{2}\cdot 6^{2}}-\cdots\right] \end{equation*}
\begin{equation} +a_{o}\left[\frac{2x^{3}}{3^{3}}-\frac{2x^{6}}{3^{3}\cdot 6^{2}}-\frac{2x^{6}}{3^{2}\cdot 6^{3}}+\cdots\right] \tag{4.4.13} \end{equation}
Hence the general solution is given by
\begin{equation*} y=C_{1}y_{1}+C_{2}y_{2}=a_{o}C_{1}\left[1-\frac{x^{3}}{3^{2}}+\frac{x^{6}}{3^{2}\cdot 6^{2}}-\cdots\right] \end{equation*}
\begin{equation*} +a_{o}C_{2}\log x\left[1-\frac{x^{3}}{3^{2}}+\frac{x^{6}}{3^{2}\cdot 6^{2}}-\cdots\right] \end{equation*}
\begin{equation*} +a_{o}C_{2}\left[\frac{2x^{3}}{3^{3}}-\frac{2x^{6}}{3^{2}\cdot 6^{2}}(\frac{1}{3}+\frac{1}{6})-\frac{2x^{6}}{3^{2}\cdot 6^{2}\cdot 9^{2}}(\frac{1}{3}+\frac{1}{6}+\frac{1}{9})+\cdots\right] \end{equation*}
\begin{equation*} \therefore y =\left(C_{1}+C_{2}\log x\right)a_{o}\left[1-\frac{x^{3}}{3^{2}}+\frac{x^{6}}{3^{2}\cdot 6^{2}}-\cdots\right] \end{equation*}
\begin{equation} +2a_{o}C_{2}\left[\frac{x^{3}}{3^{3}}-\frac{x^{6}}{3^{5}\cdot 2^{2}}(1+\frac{1}{2})+\cdots\right] \tag{4.4.14} \end{equation}

Example 4.4.3.

Solve
\begin{equation*} x^{2}y''+xy'+(x^{2}-1)y=0. \end{equation*}
Solution.
\begin{equation} x^{2}y''+xy'+(x^{2}-1)y=0 \tag{4.4.15} \end{equation}
Let
\begin{equation} y=\sum\limits_{\lambda =0}^{\infty}a_{\lambda}x^{\lambda+k}\tag{4.4.16} \end{equation}
be the solution of eqn. (4.4.15). With the help of eqn. (4.4.16), eqn. (4.4.15) becomes-
\begin{equation*} x^{2}\sum a_{\lambda}(\lambda+k)(\lambda+k-1)x^{\lambda+k-2}+x\sum a_{\lambda}(\lambda+k)x^{\lambda+k-1} \end{equation*}
\begin{equation*} +(x^{2}-1)\sum a_{\lambda}x^{\lambda+k}=0 \end{equation*}
or,
\begin{equation*} \sum a_{\lambda}\left[(\lambda+k)(\lambda+k-1)+(\lambda +k)-1\right]x^{\lambda+k}+\sum a_{\lambda}x^{\lambda+k-2}=0 \end{equation*}
or,
\begin{equation*} \sum a_{\lambda}\left[(\lambda+k)^{2}-1\right]x^{\lambda+k}+\sum a_{\lambda}x^{\lambda+k+2}=0 \end{equation*}
or,
\begin{equation} \sum\limits_{\lambda=0}^{\infty} a_{\lambda}\left[(\lambda+k+1)(\lambda+k-1)\right]x^{\lambda+k}+\sum\limits_{\lambda=0}^{\infty} a_{\lambda}x^{\lambda+k+2}=0 \tag{4.4.17} \end{equation}
Equating the coefficient of \(x^{k}\) to zero, we get -
\begin{equation*} a_{o}(k+1)(k-1)=0 \quad \Rightarrow k=1,-1 \quad \because a_{o} \neq 0 \end{equation*}
Equating the coefficient of \(x^{k+1}\) to zero, we get -
\begin{equation*} a_{1}(k+2)k=0 \Rightarrow a_{1}=0 \quad \because (k+2)k \neq 0 \quad \text{for}\quad k=\pm 1 \end{equation*}
Equating the coefficient of \(x^{\lambda+ k+2}\) to zero, we get -
\begin{equation*} a_{\lambda+ 2}\left[(\lambda +k+3)(\lambda+ k+1)\right]+a_{\lambda}=0 \end{equation*}
or,
\begin{equation*} a_{\lambda+ 2}=- \frac{a_{\lambda}}{\left[(\lambda +k+3)(\lambda+ k+1)\right]} \end{equation*}
or,
\begin{equation*} a_{2}=- \frac{a_{o}}{(k+3)(k+1)} \end{equation*}
or,
\begin{equation*} a_{3}=- \frac{a_{1}}{(k+4)(k+2)}=0 =a_{5}=a_{7}=\cdots \end{equation*}
or,
\begin{equation*} a_{4}=- \frac{a_{2}}{(k+5)(k+3)}= \frac{a_{o}}{(k+1)(k+3)^{2}(k+5)} \end{equation*}
Hence, from eqn. (4.4.16), we have
\begin{equation*} y=a_{o}x^{k}\left[1-\frac{x^{2}}{(k+1)(k+3)}\right. \end{equation*}
\begin{equation} \left. +\frac{x^{4}}{(k+1)(k+3)^{2}(k+5)}-\cdots\right] \tag{4.4.18} \end{equation}
putting \(k=1\) in eqn. (4.4.18), we get -
\begin{equation} y=a_{o}x\left[1-\frac{x^{2}}{(2)(4)}+\frac{x^{4}}{(2)(4)^{2}(6)}-\cdots\right] \tag{4.4.19} \end{equation}
Coefficient of \(x^{2}{,}x^{4},\) etc. in eqn. (4.4.18) becomes infinite when \(k=-1 \text{.}\) If any one coefficient of the series becomes infinite at \(k=k_{2}\text{,}\) we should put \(a_{o}=b_{o}(k-k_{2})\) to overcome this difficulty.
Hence, put \(a_{o}=b_{o}(k+1)\) in eqn. (4.4.18), we get -
\begin{equation*} y=b_{o}x^{k}\left[(k+1)-\frac{(k+1)x^{2}}{(k+1)(k+3)}+\frac{(k+1)x^{4}}{(k+1)(k+3)^{2}(k+5)}-\cdots\right] \end{equation*}
\begin{equation} =b_{o}x^{k}\left[(k+1)-\frac{x^{2}}{(k+3)}+\frac{x^{4}}{(k+3)^{2}(k+5)}-\cdots\right] \tag{4.4.20} \end{equation}
On differentiating eqn. (4.4.20) w.r.t. ’k’, we get -
\begin{equation*} \frac{\partial y}{\partial k}=b_{o}x^{k}\log x\left[(k+1)-\frac{x^{2}}{(k+3)}+\frac{x^{4}}{(k+3)^{2}(k+5)}-\cdots\right] \end{equation*}
\begin{equation*} + b_{o}x^{k}\left[1+\frac{x^{2}}{(k+3)^{2}}-\frac{2x^{4}}{(k+3)^{2}(k+5)}-\frac{x^{4}}{(k+3)^{2}(k+5)^{2}}+\cdots\right] \end{equation*}
on replacing \(k\) by -1, we get -
\begin{equation*} \left(\frac{\partial y}{\partial k}\right)_{k=-1}=b_{o}x^{-1}\log x\left[0-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2}\cdot 4}-\cdots\right] \end{equation*}
\begin{equation*} + b_{o}x^{-1}\left[1+\frac{x^{2}}{2^{2}}-\frac{2x^{4}}{2^{2}\cdot 4}-\frac{x^{4}}{2^{2}\cdot 4^{2}}+\cdots\right] \end{equation*}
or,
\begin{equation*} y=b_{o}x\log x\left[-\frac{1}{2}+\frac{x^{2}}{2^{2}\cdot 4}-\cdots\right]+ b_{o}x^{-1}\left[1+\frac{x^{2}}{2^{2}}-\frac{x^{4}}{2^{2}\cdot 4}(1+\frac{1}{4})+\cdots\right] \end{equation*}
\begin{equation*} \therefore y=C_{1}x\left[1-\frac{x^{2}}{2\cdot 4}+\frac{x^{4}}{2\cdot 4^{2}\cdot 6}-\cdots\right]+ C_{2}x\log x\left[-\frac{1}{2}+\frac{x^{2}}{2^{2}\cdot 4}-\cdots\right] \end{equation*}
\begin{equation*} +C_{2}x^{-1}\left[1+\frac{x^{2}}{2^{2}}-\frac{x^{4}}{2^{2}\cdot 4}(1+\frac{1}{4})+\cdots\right] \end{equation*}

Example 4.4.4.

Solve
\begin{equation*} x^{2}y''+4xy'+(x^{2}+2)y =0. \end{equation*}
Solution.
\begin{equation} x^{2}y''+4xy'+(x^{2}+2)y =0 \tag{4.4.21} \end{equation}
Let
\begin{equation*} y=\sum\limits_{\lambda =0}^{\infty}a_{\lambda}x^{\lambda+k} \end{equation*}
be the solution of eqn. (4.4.21). Therefore from eqn. (4.4.21), we have -
\begin{equation*} x^{2}\sum a_{\lambda}(\lambda+k)(\lambda+k-1)x^{\lambda+k-2}+4x\sum a_{\lambda}(\lambda+k)x^{\lambda+k-1} \end{equation*}
\begin{equation*} +(x^{2}+2)\sum a_{\lambda}x^{\lambda+k}=0 \end{equation*}
or,
\begin{equation*} \sum a_{\lambda}(\lambda+k)(\lambda+k-1)x^{\lambda+k}+4\sum a_{\lambda}(\lambda+k)x^{\lambda+k} \end{equation*}
\begin{equation*} +\sum a_{\lambda}x^{\lambda+k+2}+2\sum a_{\lambda}x^{\lambda+k}=0 \end{equation*}
or,
\begin{equation*} \sum a_{\lambda}\left[(\lambda+k)\{(\lambda+k-1)+4\}+2\right]x^{\lambda+k}+\sum a_{\lambda}x^{\lambda+k+2}=0 \end{equation*}
or,
\begin{equation} \sum a_{\lambda}\left[(\lambda+k)^{2}+3(\lambda+k)+2\right]x^{\lambda+k}+\sum a_{\lambda}x^{\lambda+k+2}=0 \tag{4.4.22} \end{equation}
Equating the coefficient of \(x^{k} \) to zero, we get -
\begin{equation*} a_{o}(k^{2}+3k+2)=0, \end{equation*}
or,
\begin{equation*} (k+1)(k+2)=0 \end{equation*}
\begin{equation*} \because \quad a_{o}\neq 0. \quad \therefore \quad k=-1,-2. \end{equation*}
Equating the coefficient of \(x^{k+1}\) to zero, we get -
\begin{equation*} a_{1}\left[(k+1)^{2}+3(k+1)+2\right]=0 \end{equation*}
or,
\begin{equation*} a_{1}\left[k^{2}+5k+6\right]=0 \end{equation*}
or,
\begin{equation*} a_{1}\left[(k+2)(k+3)\right]=0 \end{equation*}
for \(k=-2\text{,}\) \(a_{1}\) may or may not be zero, also \(k \neq -3\text{.}\) for \(k=-1,\) \(a_{1} =0\text{.}\) Equating the coefficient of \(x^{\lambda +k+2}\) to zero, we get -
\begin{equation*} a_{\lambda+2}\left[(\lambda+ k+2)^{2}+3(\lambda+ k+2)+2\right]+a_{\lambda}=0 \end{equation*}
or,
\begin{equation*} a_{\lambda+2}\left[(\lambda+ k+2)(\lambda+ k+5)+2\right]+a_{\lambda}=0 \end{equation*}
or,
\begin{equation*} a_{\lambda+2}\left[k^{2}+(2\lambda+ 7)k+\lambda^{2}+ 7\lambda+12 \right]+a_{\lambda}=0 \end{equation*}
or,
\begin{equation} a_{\lambda+2}=-\frac{a_{\lambda}}{k^{2}+(2\lambda+ 7)k+\lambda^{2}+ 7\lambda+12} \tag{4.4.23} \end{equation}
for \(k=-1\text{,}\)
\begin{equation*} a_{\lambda+2}=-\frac{a_{\lambda}}{(-1)^{2}+(2\lambda+ 7)(-1)+\lambda^{2}+ 7\lambda+12} \end{equation*}
\begin{equation*} =-\frac{a_{\lambda}}{1-(2\lambda+7)+\lambda^{2}+7\lambda+12} \end{equation*}
At \(\lambda=0\text{,}\)
\begin{equation*} a_{2}=-\frac{a_{o}}{1-7+12} =-\frac{a_{o}}{6}; \end{equation*}
\begin{equation*} a_{3}=-\frac{a_{1}}{1-9+1+7+12} =0=a_{5}=a_{7}=\cdots; \end{equation*}
\begin{equation*} a_{4}=-\frac{a_{o}}{120}. \end{equation*}
Hence, for \(k=-1\text{,}\)
\begin{equation} y_{1}=a_{o}x^{-1}\left[1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\cdots\right] \tag{4.4.24} \end{equation}
for \(k=-2\text{,}\)
\begin{equation*} a_{\lambda+2}=-\frac{a_{\lambda}}{4-2(2\lambda+7)+\lambda^{2}+7\lambda +12} \end{equation*}
At \(\lambda=0\text{,}\)
\begin{equation*} a_{2}=-\frac{a_{o}}{4-2(7)+12} =-\frac{a_{o}}{2}; \end{equation*}
At \(\lambda=1\text{,}\)
\begin{equation*} a_{3}=-\frac{a_{1}}{4-18+1+7+12} =-\frac{a_{1}}{6}; \end{equation*}
At \(\lambda=2\text{,}\)
\begin{equation*} a_{4}=-\frac{a_{2}}{4-2(11)+4+14+12}=\frac{a_{o}}{24}; \end{equation*}
At \(\lambda=3\text{,}\)
\begin{equation*} a_{5} = \frac{a_{1}}{120}. \end{equation*}
Hence, for \(k=-2\text{,}\)
\begin{equation*} y_{2}=a_{o}x^{-2}\left[1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots\right] \end{equation*}
\begin{equation} +a_{1}x^{-1}\left[1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\cdots\right] \tag{4.4.25} \end{equation}
Here, the solution (4.4.24) is a part of solution (4.4.25) which is not possible because expansion of \(y_{1}\) and \(y_{2}\) are two different solutions of the same equation and hence \(a_{1}\) must be zero in solution (4.4.25).
\begin{equation*} \therefore \quad y_{2}=a_{o}x^{-2}\left[1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots\right] \end{equation*}
Thus the complete solution is \(y=Ay_{1} +By_{2}.\)
\begin{equation*} \therefore \quad y = Ax^{-1}\left[1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\cdots\right]+Bx^{-2}\left[1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots\right] \end{equation*}